题目内容
【题目】已知函数(是自然对数的底数,).
(1)求函数的图象在处的切线方程;
(2)若函数在区间上单调递增,求实数的取值范围;
(3)若函数在区间上有两个极值点,且恒成立,求满足条件的的最小值(极值点是指函数取极值时对应的自变量的值).
【答案】(1);(2);(3).
【解析】
(1)利用导数的几何意义计算即可;
(2)在上恒成立,只需,注意到;
(3)在上有两根,令,求导可得在上单调递减,在上单调递增,所以且,,,求出的范围即可.
(1)因为,所以,
当时,,
所以切线方程为,即.
(2),.
因为函数在区间上单调递增,所以,且恒成立,
即,
所以,即,又,
故,所以实数的取值范围是.
(3).
因为函数在区间上有两个极值点,
所以方程在上有两不等实根,即.
令,则,由,得,
所以在上单调递减,在上单调递增,
所以,解得且.
又由,所以,
且当和时,单调递增,
当时,单调递减,是极值点,
此时
令,则,
所以在上单调递减,所以.
因为恒成立,所以.
若,取,则,
所以.
令,则,.
当时,;当时,.
所以,
所以在上单调递增,所以,
即存在使得,不合题意.
满足条件的的最小值为-4.
练习册系列答案
相关题目