题目内容
已知函数f(x)=sinxcosx+
cos2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间[-
,
]上的最大值和最小值.
3 |
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间[-
π |
6 |
π |
2 |
(Ⅰ)∵f(x)=sinxcosx+
cos2x=
•2sinxcosx+
(cos2x+1)
=
sin2x+
cos2x+
=sin(2x+
)+
,∴函数f(x)的最小正周期T=
=π.
(Ⅱ)∵-
≤x≤
,0≤2x+
≤
,∴-
≤sin(2x+
)≤1,
∴0≤sin(2x+
)+
≤1+
=
,∴f(x)在区间[-
,
]上的最大值为
,最小值为0.
3 |
1 |
2 |
| ||
2 |
=
1 |
2 |
| ||
2 |
| ||
2 |
π |
3 |
| ||
2 |
2π |
2 |
(Ⅱ)∵-
π |
6 |
π |
2 |
π |
3 |
4π |
3 |
| ||
2 |
π |
3 |
∴0≤sin(2x+
π |
3 |
| ||
2 |
| ||
2 |
2+
| ||
2 |
π |
6 |
π |
2 |
2+
| ||
2 |
练习册系列答案
相关题目