题目内容
已知一个圆的圆心在轴的正半轴上,且经过点,直线被该圆截得的弦长为,则该圆的方程是( )
A. | B. |
C. | D. |
B
分析:根据一个圆的圆心在x轴的正半轴上,设出圆心坐标为(a,0),且a大于0,半径为r,表示出圆的标准方程,由圆经过(0,0),把(0,0)代入所设的圆的方程,得到a=r,可得到圆心坐标为(r,0),然后利用点到直线的距离公式表示出圆心到已知直线的距离d,由已知弦长的一半,圆的半径r以及d,利用勾股定理列出关于r的方程,求出方程的解可得到r的值,确定出圆心坐标和半径,进而确定出圆的标准方程.
解答:解:由题意设圆心坐标为(a,0)(a>0),圆的半径为r,
∴圆的方程为(x-a)2+y2=r2(r>0),
又圆经过(0,0),
∴a2=r2,即a=r,
∴圆心坐标为(r,0),
∴圆心到直线
x-y=0的距离d=,
又弦长为2,即弦长的一半为1,
∴r2=d2+12,即r2=
r2+1,
解得:r=2,
∴圆心坐标为(2,0),半径r=2,
则圆的标准方程为:(x-2)2+y2=4,即x2+y2-4x=0.
故选B
解答:解:由题意设圆心坐标为(a,0)(a>0),圆的半径为r,
∴圆的方程为(x-a)2+y2=r2(r>0),
又圆经过(0,0),
∴a2=r2,即a=r,
∴圆心坐标为(r,0),
∴圆心到直线
x-y=0的距离d=,
又弦长为2,即弦长的一半为1,
∴r2=d2+12,即r2=
r2+1,
解得:r=2,
∴圆心坐标为(2,0),半径r=2,
则圆的标准方程为:(x-2)2+y2=4,即x2+y2-4x=0.
故选B
练习册系列答案
相关题目