题目内容

已知x,y,z∈R+且x+y+z=1,求证:
x
+
y
+
z
3
分析:利用分析法,将欲证不等式两边平方,利用条件,结合基本不等式,即可证得结论.
解答:证明:欲证
x
+
y
+
z
3

只需证x+y+z+2
xy
+2
xz
+2
yz
≤3

∵x+y+z=1
∴只需证
xy
+
xz
+
yz
≤1

xy
x+y
2
xz
x+z
2
yz
y+z
2

累加可得
xy
+
yz
+
xz
≤1
故得证.
点评:本题考查不等式的证明,考查分析法的运用,考查基本不等式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网