题目内容

设函数(n∈N,且n>1,x∈N).
(Ⅰ)当x=6时,求的展开式中二项式系数最大的项;
(Ⅱ)对任意的实数x,证明>f'(x)(f'(x)是f(x)的导函数);
(Ⅲ)是否存在a∈N,使得an<<(a+1)n恒成立?若存在,试证明你的结论并求出a的值;若不存在,请说明理由.
【答案】分析:(1)利用二项式系数的特点,找到展开式系数最大的项,即第四项;
(2)利用基本不等式适当放缩进行证明或函数思想进行转化与证明;
(3)探究性问题处理不等式问题,要注意对展开式系数进行适当放缩从而达到证明的目的.
解答:解:(Ⅰ)展开式中二项式系数最大的项是第4项,这项是
(Ⅱ)证法一:因=
证法二:因=

故只需对进行比较.
令g(x)=x-lnx(x≥1),有
,得x=1
因为当0<x<1时,g′(x)<0,g(x)单调递减;当1<x<+∞时,g′(x)>0,g(x)单调递增,所以在x=1处g(x)有极小值1
故当x>1时,g(x)>g(1)=1,
从而有x-lnx>1,亦即x>lnx+1>lnx
故有恒成立.
所以f(2x)+f(2)≥2f′(x),原不等式成立.
(Ⅲ)对m∈N,且m>1

=
=


=
<3;
又因>0(k=2,3,…,m),故
,从而有成立,
即存在a=2,使得恒成立.
点评:本题考查函数、不等式、导数、二项式定理、组合数计算公式等内容和数学思想方法.考查综合推理论证与分析解决问题的能力及创新意识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网