题目内容
设函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_ST/0.png)
(Ⅰ)当x=6时,求
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_ST/1.png)
(Ⅱ)对任意的实数x,证明
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_ST/2.png)
(Ⅲ)是否存在a∈N,使得an<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_ST/3.png)
【答案】分析:(1)利用二项式系数的特点,找到展开式系数最大的项,即第四项;
(2)利用基本不等式适当放缩进行证明或函数思想进行转化与证明;
(3)探究性问题处理不等式问题,要注意对展开式系数进行适当放缩从而达到证明的目的.
解答:解:(Ⅰ)展开式中二项式系数最大的项是第4项,这项是![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/0.png)
(Ⅱ)证法一:因![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/1.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/6.png)
证法二:因![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/7.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/9.png)
而![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/10.png)
故只需对
和
进行比较.
令g(x)=x-lnx(x≥1),有![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/13.png)
由
,得x=1
因为当0<x<1时,g′(x)<0,g(x)单调递减;当1<x<+∞时,g′(x)>0,g(x)单调递增,所以在x=1处g(x)有极小值1
故当x>1时,g(x)>g(1)=1,
从而有x-lnx>1,亦即x>lnx+1>lnx
故有
恒成立.
所以f(2x)+f(2)≥2f′(x),原不等式成立.
(Ⅲ)对m∈N,且m>1
有![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/16.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/17.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/18.png)
<![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/20.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/21.png)
<3;
又因
>0(k=2,3,…,m),故![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/23.png)
∵
,从而有
成立,
即存在a=2,使得
恒成立.
点评:本题考查函数、不等式、导数、二项式定理、组合数计算公式等内容和数学思想方法.考查综合推理论证与分析解决问题的能力及创新意识.
(2)利用基本不等式适当放缩进行证明或函数思想进行转化与证明;
(3)探究性问题处理不等式问题,要注意对展开式系数进行适当放缩从而达到证明的目的.
解答:解:(Ⅰ)展开式中二项式系数最大的项是第4项,这项是
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/0.png)
(Ⅱ)证法一:因
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/6.png)
证法二:因
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/9.png)
而
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/10.png)
故只需对
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/12.png)
令g(x)=x-lnx(x≥1),有
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/13.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/14.png)
因为当0<x<1时,g′(x)<0,g(x)单调递减;当1<x<+∞时,g′(x)>0,g(x)单调递增,所以在x=1处g(x)有极小值1
故当x>1时,g(x)>g(1)=1,
从而有x-lnx>1,亦即x>lnx+1>lnx
故有
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/15.png)
所以f(2x)+f(2)≥2f′(x),原不等式成立.
(Ⅲ)对m∈N,且m>1
有
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/16.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/17.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/18.png)
<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/20.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/21.png)
<3;
又因
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/23.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/25.png)
即存在a=2,使得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214443695326945/SYS201310232144436953269021_DA/26.png)
点评:本题考查函数、不等式、导数、二项式定理、组合数计算公式等内容和数学思想方法.考查综合推理论证与分析解决问题的能力及创新意识.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目