题目内容
设函数f(x)=x |
a(x+2) |
2 |
2013 |
(1)求f(x)的表达式;
(2)求x2011的值;
(3)若an=
4 |
xn |
| ||||
2an+1an |
分析:(1)由方程x=f(x)有唯一解,则ax2+(2a-1)x=0有唯一解,知 a=
,由此能求出f(x)的表达式;
(2)由f(xn)=xn+1,知
-
=
(n∈N*),由 等差数列的定义可求出数列{xn}的通项公式;
(3)由bn=
=
=
=1+
=1+
-
b1+b2+…+bn-n<1,由此能证明b1+b2+…+bn<n+1.
1 |
2 |
(2)由f(xn)=xn+1,知
1 |
xn+1 |
1 |
xn |
1 |
2 |
(3)由bn=
| ||||
2an+1an |
(2n+1)2+(2n-1)2 |
2(2n+1)(2n-1) |
4n2+1 |
4n2-1 |
2 |
(2n-1)(2n+1) |
1 |
2n-1 |
1 |
2n+1 |
b1+b2+…+bn-n<1,由此能证明b1+b2+…+bn<n+1.
解答:解:(1)由
=x,可化简为ax(x+2)=x∴ax2+(2a-1)x=0
∴当且仅当a=
时,方程x=f(x)有唯一解.
从而f(x)=
(2)由已知f(xn)=xn+1(n∈N*),得
=xn+1
∴
=
+
,即
-
=
(n∈N*)
∴数列{
}是以
为首项,
为公差的等差数列.
=
+(n-1)×
=
,∴xn=
∵f(x1)=
,
∴
=
,即x1=
∴xn=
=
故x2011=
=
(3)证明:∵xn=
,
∴an=4×
-4023=2n-1∴bn=
=
=
=1+
=1+
-
∴b1+b2+bn-n=(1+1-
)+(1+
-
)++(1+
-
)-n=1-
<1
故b1+b2+…+bn<n+1.
x |
a(x+2) |
∴当且仅当a=
1 |
2 |
从而f(x)=
2x |
x+2 |
(2)由已知f(xn)=xn+1(n∈N*),得
2xn |
xn+2 |
∴
1 |
xn+1 |
1 |
2 |
1 |
xn |
1 |
xn+1 |
1 |
xn |
1 |
2 |
∴数列{
1 |
xn |
1 |
x1 |
1 |
2 |
1 |
xn |
1 |
x1 |
1 |
2 |
(n-1)x1+2 |
2x1 |
2x1 |
(n-1)x1+2 |
∵f(x1)=
2 |
2013 |
∴
2x1 |
x1+2 |
2 |
2013 |
1 |
1006 |
∴xn=
2×
| ||
(n-1)×
|
2 |
n+2011 |
故x2011=
2 |
2011+2011 |
1 |
2011 |
(3)证明:∵xn=
2 |
n+2011 |
∴an=4×
n+2011 |
2 |
| ||||
2an+1an |
(2n+1)2+(2n-1)2 |
2(2n+1)(2n-1) |
4n2+1 |
4n2-1 |
2 |
(2n-1)(2n+1) |
1 |
2n-1 |
1 |
2n+1 |
∴b1+b2+bn-n=(1+1-
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n-1 |
1 |
2n+1 |
1 |
2n+1 |
故b1+b2+…+bn<n+1.
点评:本题考查数列的性质和应用,解题时要注意通项公式的求法和裂项公式的合理运用,属于中档题.
练习册系列答案
相关题目