题目内容

已知函数h(x)=lnx+
1
x

(1)若g(x)=h(x+m),求g(x)的极小值;
(2)若φ(x)=h(x)-
1
x
+ax2
-2x有两个不同的极值点,其极小值为M,试比较2M与-3的大小关系,并说明理由;
(3)若f(x)=h(x)-
1
x
,设Sn=
n
k=1
f/(1+
k
n
),Tn=
n
k=1
f/(1+
k-1
n
),n∈N*
.是否存在正整数n0,使得当n>n0时,恒有Sn+Tn
n
4028
+nln4.若存在,求出一个满足条件的n0,若不存在,请说明理由.
分析:(1)由已知可得g(x)的表达式,求导数判单调性可得极小值;(2)可得φ(x),求导数可得极值M,构造函数v(x)=-1+2lnx-2x,再次求导数判单调性可得;(3)由数列的求和方法分别求得Sn和Tn,归纳可得
1
2n
<ln
2n
2n-1
,累加可得
Sn+Tn
2n
<ln2+
1
4n
,可得存在正整数n0=2014使之成立.
解答:解:(1)∵g(x)=h(x+m)
∴g(x)=ln(x+m)+
1
x+m
  (x>-m)
∴g′(x)=
1
x+m
-
1
(x+m)2
=
x+m-1
(x+m)2
 
x (-m,1-m) 1-m (1-m,+∞)
 g′(x) - 0 +
g(x) 递减 极小值 递增
所以g(x)极小值=g(1-m)=1
(2)由题意可得φ(x)=h(x)-
1
x
+ax2
-2x=ax2-2x+lnx  (x>0)
求导数可得φ′(x)=2ax-2+
1
x
=
2ax2-2x+1
x
  (x>0),
∵φ(x)有两个不同的极值点,∴2ax2-2x+1=0在(0,+∞)有两个不同的实根.
设p(x)=2ax2-2x+1,设两根为x1,x2,且x1<x2
则有
△=4-8a>0
x1+x2=
1
a
>0
x1x2=
1
2a
>0
,解之可得0<a<
1
2

x (0,x1 x1 (x1,x2 x2 (x2,+∞)
 φ′(x) + 0 - 0 +
φ(x) 递增 极大值 递减 极小值 递增
φ(x)极小值=M=φ(x2)=ax22-2x2+lnx2
又p(x)=0在(0,+∞)的两根为x1,x22ax22-2x2+1=0
φ(x)极小值=M=φ(x2)=ax22-2x2+lnx2=x2-
1
2
-2x2+lnx2=-
1
2
+lnx2-x2

∴2M=-1+2lnx2-2x2,∵x2=
1+
1-2a
2a
 0<a<
1
2
,∴x2>1,
令v(x)=-1+2lnx-2x,v′(x)=-
2
x
-2

∴x>1时,v′(x)<0,v(x)在(1,+∞)递减,
∴x>1时,v(x)=-1+2lnx-2x<v(1)=-3
∴2M<-3
(3)要使n>n0时,恒有Sn+Tn
n
4028
+nln4
即:
Sn+Tn
2n
1
8056
+ln2

f(x)=lnx,f/(x)=
1
x
.Sn=
1
1+
1
n
+
1
1+
2
n
+…+
1
1+
n
n

Tn=
1
1+
0
n
+
1
1+
1
n
+…+
1
1+
n-1
n
Sn
n
=
1
n
(
1
1+
1
n
+
1
1+
2
n
+…+
1
1+
n
n
)
=
1
n+1
+
1
n+2
+…+
1
2n

同理:
Tn
n
=
1
n
+
1
n+1
+…+
1
2n-1

Sn+Tn
2n
=
1
2
[(
1
n
+
1
n+1
)+(
1
n+1
+
1
n+2
)+…+(
1
2n-1
+
1
2n
)]

由(1)的结论,令m=1得
x
1+x
<ln(x+1)(0<x<1)
即:
1
x
1+
1
x
<ln(
1
x
+1)(x>1)

1
1+x
<ln(
x+1
x
)
即:
1
1+n
<ln
n+1
n
1
2+n
<ln
n+2
n+1
1
2n
<ln
2n
2n-1

累加:
1
n+1
+
1
n+2
+…+
1
2n
<ln2即:
Sn
n
<ln2

Sn+Tn
2n
=
1
2
[(
1
n
+
1
n+1
)+(
1
n+1
+
1
n+2
)+…+(
1
2n-1
+
1
2n
)]=
Sn
n
+
1
4n

Sn+Tn
2n
<ln2+
1
4n

要使
Sn+Tn
2n
1
8056
+ln2
只需要ln2+
1
4n
1
8056
+ln2
,即:n>2014
综上所述,存在正整数n0=2014,使得当n>n0时,恒有nln4<Sn+Tn
n
4028
+nln4
点评:本题考查导数的极值和数列的综合,涉及数列的求和以及表达式的综合应用,属难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网