题目内容
已知:函数f(x)=
(sinx-cosx).
(1)求函数f(x)的最小正周期和值域;
(2)若函数f(x)的图象过点(α,
),
<α<
.求f(
+α)的值.
2 |
(1)求函数f(x)的最小正周期和值域;
(2)若函数f(x)的图象过点(α,
6 |
5 |
π |
4 |
3π |
4 |
π |
4 |
(1)f(x)=
(sinx-cosx)=2(sinx•
-cosx•
)=2sin(x-
)---(3分)
∴函数的最小正周期为2π,值域为{y|-2≤y≤2}.
(2)解法1:依题意得:2sin(α-
)=
,sin(α-
)=
,
∵
<α<
.∴0<α-
<
,∴cos(α-
)=
=
=
f(
+α)=2sin[(α-
)+
]
∵sin[(α-
)+
]=sin(α-
)cos
+cos(α-
)sin
=
(
+
)=
∴f(
+α)=
解法2:依题意得:sin(α-
)=
,得sinα-cosα=
----①
∵
<α<
.∴0<α-
<
,∴cos(α-
)=
=
=
由cos(α-
)=
得sinα+cosα=
-----------②
①+②得2sinα=
,∴f(
+α)=
解法3:由sin(α-
)=
得sinα-cosα=
,
两边平方得,1-sin2α=
,sin2α=
,
∵
<α<
.∴
<2α<
由sin2α=
>0知
<2α<π
∴cos2α=-
=-
,由cos2α=1-2sin2α,得sin2α=
=
∴sinα=
∴f(
+α)=
.
2 |
| ||
2 |
| ||
2 |
π |
4 |
∴函数的最小正周期为2π,值域为{y|-2≤y≤2}.
(2)解法1:依题意得:2sin(α-
π |
4 |
6 |
5 |
π |
4 |
3 |
5 |
∵
π |
4 |
3π |
4 |
π |
4 |
π |
2 |
π |
4 |
1-sin2(α-
|
1-(
|
4 |
5 |
π |
4 |
π |
4 |
π |
4 |
∵sin[(α-
π |
4 |
π |
4 |
π |
4 |
π |
4 |
π |
4 |
π |
4 |
| ||
2 |
3 |
5 |
4 |
5 |
7
| ||
10 |
∴f(
π |
4 |
7
| ||
5 |
解法2:依题意得:sin(α-
π |
4 |
3 |
5 |
3
| ||
5 |
∵
π |
4 |
3π |
4 |
π |
4 |
π |
2 |
π |
4 |
1-sin2(α-
|
1-(
|
4 |
5 |
由cos(α-
π |
4 |
4 |
5 |
4
| ||
5 |
①+②得2sinα=
7
| ||
5 |
π |
4 |
7
| ||
5 |
解法3:由sin(α-
π |
4 |
3 |
5 |
3
| ||
5 |
两边平方得,1-sin2α=
18 |
25 |
7 |
25 |
∵
π |
4 |
3π |
4 |
π |
2 |
3π |
2 |
7 |
25 |
π |
2 |
∴cos2α=-
1-sin22α |
24 |
25 |
1-cos2α |
2 |
49 |
50 |
∴sinα=
7
| ||
10 |
π |
4 |
7
| ||
5 |
练习册系列答案
相关题目