题目内容

已知:函数f(x)=
2
(sinx-cosx)

(1)求函数f(x)的最小正周期和值域;
(2)若函数f(x)的图象过点(α,
6
5
)
π
4
<α<
4
.求f(
π
4
+α)
的值.
(1)f(x)=
2
(sinx-cosx)
=2(sinx•
2
2
-cosx•
2
2
)
=2sin(x-
π
4
)
---(3分)
∴函数的最小正周期为2π,值域为{y|-2≤y≤2}.
(2)解法1:依题意得:2sin(α-
π
4
)=
6
5
sin(α-
π
4
)=
3
5

π
4
<α<
4
.∴0<α-
π
4
π
2
,∴cos(α-
π
4
)
=
1-sin2(α-
π
4
)
=
1-(
3
5
)
2
=
4
5
f(
π
4
+α)
=2sin[(α-
π
4
)+
π
4
]

sin[(α-
π
4
)+
π
4
]=sin(α-
π
4
)cos
π
4
+cos(α-
π
4
)sin
π
4
=
2
2
(
3
5
+
4
5
)=
7
2
10

f(
π
4
+α)
=
7
2
5

解法2:依题意得:sin(α-
π
4
)=
3
5
,得sinα-cosα=
3
2
5
----①
π
4
<α<
4
.∴0<α-
π
4
π
2
,∴cos(α-
π
4
)
=
1-sin2(α-
π
4
)
=
1-(
3
5
)
2
=
4
5

cos(α-
π
4
)
=
4
5
sinα+cosα=
4
2
5
-----------②
①+②得2sinα=
7
2
5
,∴f(
π
4
+α)
=
7
2
5

解法3:由sin(α-
π
4
)=
3
5
sinα-cosα=
3
2
5

两边平方得,1-sin2α=
18
25
sin2α=
7
25

π
4
<α<
4
.∴
π
2
<2α<
2
sin2α=
7
25
>0知
π
2
<2α<π

cos2α=-
1-sin2
=-
24
25
,由cos2α=1-2sin2α,得sin2α=
1-cos2α
2
=
49
50

sinα=
7
2
10
f(
π
4
+α)
=
7
2
5

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网