题目内容
如图,在侧棱垂直底面的四棱柱ABCD
A1B1C1D1中,AD∥BC,AD⊥AB,AB=
,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240415383633421.jpg)
(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF.
(2)求BC1与平面B1C1EF所成的角的正弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041538332357.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041538347344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240415383633421.jpg)
(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF.
(2)求BC1与平面B1C1EF所成的角的正弦值.
(1)见解析 (2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041538378529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041538378529.png)
(1)证明:①因为C1B1∥A1D1,C1B1?平面ADD1A1,
所以C1B1∥平面A1D1DA.
又因为平面B1C1EF∩平面A1D1DA=EF,
所以C1B1∥EF,所以A1D1∥EF.
②因为BB1⊥平面A1B1C1D1,所以BB1⊥B1C1.
又因为B1C1⊥B1A1,所以B1C1⊥平面ABB1A1,
所以B1C1⊥BA1.
在矩形ABB1A1中,F是AA1的中点,
tan∠A1B1F=tan∠AA1B=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041538394413.png)
即∠A1B1F=∠AA1B,
故BA1⊥B1F.
所以BA1⊥平面B1C1EF.
(2)解:设BA1与B1F交点为H,连接C1H.
由(1)知BA1⊥平面B1C1EF,
所以∠BC1H是BC1与平面B1C1EF所成的角.
在矩形AA1B1B中,AB=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041538347344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041538425437.png)
在Rt△BHC1中,BC1=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041538441322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041538425437.png)
sin∠BC1H=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041538488552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041538378529.png)
所以BC1与平面B1C1EF所成角的正弦值是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041538378529.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目