题目内容
【题目】已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.
(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;
(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.
【答案】(1)曲线的标准方程为.抛物线的标准方程为.(2)见解析
【解析】
(1)由题知|PF1|+|PF2|2|F1F2|,判断动点P的轨迹W是椭圆,写出椭圆的标准方程,根据平面向量数量积运算和点A在抛物线上求出抛物线C的标准方程;(2)设出点P的坐标,再表示出点N和Q的坐标,根据题意求出的值,即可判断结果是否成立.
(1)由题知,,
所以 ,
因此动点的轨迹是以,为焦点的椭圆,
又知,,
所以曲线的标准方程为.
又由题知,
所以 ,
所以,
又因为点在抛物线上,所以,
所以抛物线的标准方程为.
(2)设,,
由题知,所以,即,
所以 ,
又因为,,
所以,
所以为定值,且定值为1.
练习册系列答案
相关题目
【题目】中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中寸表示115寸分(1寸=10分).
节气 | 冬至 | 小寒(大雪) | 大寒(小雪) | 立春(立冬) | 雨水(霜降) |
晷影长(寸) | 135 | ||||
节气 | 惊蛰(寒露) | 春分(秋分) | 清明(白露) | 谷雨(处暑) | 立夏(立秋) |
晷影长(寸) | 75.5 | ||||
节气 | 小满(大暑) | 芒种(小暑) | 夏至 | ||
晷影长(寸) | 16.0 |
已知《易经》中记录的冬至晷影长为130.0寸,春分晷影长为72.4寸,那么《易经》中所记录的夏至的晷影长应为( )
A. 14.8寸B. 15.8寸C. 16.0寸D. 18.4寸