题目内容
6、若Z∈C,且|Z+2-2i|=1,则|Z-2-2i|的最小值是
3
.分析:考虑|Z+2-2i|=1的几何意义,表示以(-2,2)为圆心,以1为半径的圆,|Z-2-2i|的最小值,就是圆上的点到(2,2)距离的最小值,转化为圆心到(2,2)距离与半径的差.
解答:解:|Z+2-2i|=1表示复平面上的点到(-2,2)的距离为1的圆,
|Z-2-2i|就是圆上的点,到(2,2)的距离的最小值,就是圆心
到(2,2)的距离减去半径,
即:|2-(-2)|-1=3
故答案为:3
|Z-2-2i|就是圆上的点,到(2,2)的距离的最小值,就是圆心
到(2,2)的距离减去半径,
即:|2-(-2)|-1=3
故答案为:3
点评:本题考查复数的基本概念,复数求模,考查转化思想,是基础题.
练习册系列答案
相关题目