搜索
题目内容
函数y=x
2
+2ax+b在区间(-∞,-1)上单调递减,则实数a的取值范围是
A.
a≤1
B.
a<1
C.
a≥1
D.
a≥-1
试题答案
相关练习册答案
A
练习册系列答案
课课练与单元测试系列答案
世纪金榜小博士单元期末一卷通系列答案
单元测试AB卷台海出版社系列答案
黄冈新思维培优考王单元加期末卷系列答案
名校名师夺冠金卷系列答案
小学英语课时练系列答案
培优新帮手系列答案
天天向上一本好卷系列答案
小学生10分钟应用题系列答案
课堂作业广西教育出版社系列答案
相关题目
已知二次函数y=-x
2
+2ax+(a-2)在x∈[-1,2]上有最大值4,求实数a的值.
20、 (本小题14分)
已知函数y=x
2
-2ax+1(a为常数)在
上的最小值为
,
试将
用a表示出来,并求出
的最大值.
要使函数y=x
2
-2ax+1在[1,2]上存在反函数,则a的取值范围是
A.
a≤1
B.
a≥2
C.
a≤1或a≥2
D.
1≤a≤2
已知二次函数y=x
2
-2ax+1在区间(2,3)上单调函数,则实数a的取值范围为
A.
a≤2或a≥3
B.
2≤a≤3
C.
a≤-3或a≥-2
D.
-3≤a≤-2
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总