题目内容

【题目】某校举行“庆元旦”教工羽毛球单循环比赛(任意两个参赛队只比赛一场),共有高一、高二、高三三个队参赛,高一胜高二的概率为 ,高一胜高三的概率为 ,高二胜高三的概率为P,每场胜负独立,胜者记1分,负者记0分,规定:积分相同者高年级获胜.
(Ⅰ)若高三获得冠军概率为 ,求P.
(Ⅱ)记高三的得分为X,求X的分布列和期望.

【答案】解:(Ⅰ)高三获得冠军有两种情况,高三胜两场,三个队各胜一场.

高三胜两场的概率为

三个队各胜一场的概率为

解得:

(Ⅱ)高三的得分X的所有可能取值有0、1、2,

P(X=0)= ,P(X=1)= ,P(X=2)=

∴X的分布列为:

X

0

1

2

P

故X的期望E(X)=


【解析】解本题一方面需要识记离散型随机变量的概率,期望与方差的计算方法,另一个重要方面在于分析各种事件及概率出现的情况.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网