题目内容
【题目】已知函数f(x)=ax2+bx+c(a>0),且f(1).
(1)求证:函数f(x)有两个不同的零点;
(2)设x1,x2是函数f(x)的两个不同的零点,求|x1﹣x2|的取值范围;
(3)求证:函数f(x)在区间(0,2)内至少有一个零点.
【答案】(1)证明见解析(2).(3)证明见解析
【解析】
(1)通过计算一元二次方程的判别式可以证明出结论;
(2)利用一元二次方程的根与系数关系,可以得到|x1﹣x2|的表达式,再利用配方法求出取值范围;
(3)根据零点存在原理,分类讨论证明出结论.
(1)∵,
∴,∴,
∴,
∵a>0,
∴△>0恒成立,
故函数f(x)有两个不同的零点.
(2)由x1,x2是函数f(x)的两个不同的零点,
则x1,x2是方程f(x)=0的两个根.
∴,,
∴|x1﹣x2|.
∴|x1﹣x2|的取值范围是.
(3)证明:∵f(0)=c,f(2)=4a+2b+c,
由(1)知:3a+2b+2c=0,
∴f(2)=a﹣c.
(ⅰ)当c>0时,有f(0)>0,又∵a>0,
∴,
∴函数f(x)在区间(0,1)内至少有一个零点.
(ⅱ)当c≤0时,f(2)=a﹣c>0,f(1)<0,
∴函数f(x)在区间(1,2)内至少有一个零点.
综上所述,函数f(x)在区间(0,2)内至少有一个零点.
【题目】甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
尺寸 | ||||||
甲零件频数 | 2 | 3 | 20 | 20 | 4 | 1 |
乙零件频数 | 3 | 5 | 17 | 13 | 8 | 4 |
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元.若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:.
参考数据:
0.25
0.15
0.10
0.05
0.025
0.010
1.323
2.072
2.706
3.841
5.024
6.635