题目内容
(本小题满分12分)设等差数列{}的前n项和为,且。
(1)求数列{}的通项公式及前n项和公式;
(2)设数列{}的通项公式为 ,是否存在正整数t,使得成等差数列?若存在,求出t和m的值;若不存在,请说明理由
【答案】
解:(1)设等差数列{}的公差为d,由已知得……………………. 2分
即
得:,…………………………………………………………………. 4分
故……………………………………………………………… 6分
(2)由(1)知,要使成等差数列,必须,整理得:m=3+………………………9分
因为m,t为正整数,所以t只能取2,3,5。
当t=2时,m=7;当t=3时,m=5;当t=5时,m=4。
故存在正整数t,使得成等差数列…………………………………...…………….12分
【解析】略
练习册系列答案
相关题目