题目内容
14.若矩阵M=$[\begin{array}{l}{a}&{2}\\{c}&{1}\end{array}]$属于特征值3的一个特征向量为$\overrightarrow{α}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,求矩阵M的逆矩阵M-1.分析 利用$[\begin{array}{l}a,2\\ c,1\end{array}][\begin{array}{l}1\\ 1\end{array}]=3[\begin{array}{l}1\\ 1\end{array}]$,可得${M}=[\begin{array}{l}1,2\\ 2,1\end{array}]$.通过MM-1=$[\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}]$,计算即可.
解答 解:由题意,得$[\begin{array}{l}a,2\\ c,1\end{array}][\begin{array}{l}1\\ 1\end{array}]=3[\begin{array}{l}1\\ 1\end{array}]$,
解得$\left\{\begin{array}{l}{a=1}\\{c=2}\end{array}\right.$,所以${M}=[\begin{array}{l}1,2\\ 2,1\end{array}]$.
设${{M}^{-1}}=[\begin{array}{l}x,y\\ z,w\end{array}]$,则${M}{{M}^{-1}}=[\begin{array}{l}1,2\\ 2,1\end{array}][\begin{array}{l}x,y\\ z,w\end{array}]=[\begin{array}{l}1,0\\ 0,1\end{array}]$,
解得$x=-\frac{1}{3},y=\frac{2}{3},z=\frac{2}{3},w=-\frac{1}{3}$,
∴${{M}^{-1}}=[\begin{array}{l}-\frac{1}{3},\frac{2}{3}\\ \frac{2}{3},-\frac{1}{3}\end{array}]$.
点评 本题考查求矩阵及其逆矩阵,考查计算能力,注意解题方法的积累,属于中档题.
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
A. | 在定义域内,只有终边相同的角的三角函数值才相等 | |
B. | {α|α=k+$\frac{π}{6}$,k∈Z}≠{β|β=-k+$\frac{π}{6}$,k∈Z} | |
C. | 若α是第二象限的角,则sin2α<0 | |
D. | 第四象限的角可表示为{α|2k+$\frac{3}{2}$<α<2k,k∈Z} |