ÌâÄ¿ÄÚÈÝ
Ò»¸öº¯Êýf£¨x£©£¬Èç¹û¶ÔÈÎÒâÒ»¸öÈý½ÇÐΣ¬Ö»ÒªËüµÄÈý±ß³¤a£¬b£¬c¶¼ÔÚf£¨x£©µÄ¶¨ÒåÓòÄÚ£¬¾ÍÓÐf£¨a£©£¬f£¨b£©£¬f£¨c£©Ò²ÊÇij¸öÈý½ÇÐεÄÈý±ß³¤£¬Ôò³Æf£¨x£©Îª¡°±£Èý½ÇÐκ¯Êý¡±£®£¨¢ñ£©ÅжÏf1(x)=
x |
£¨¢ò£©Èç¹ûg£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÖÜÆÚº¯Êý£¬ÇÒÖµÓòΪ£¨0£¬+¡Þ£©£¬Ö¤Ã÷g£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£»
£¨¢ó£©Èôº¯ÊýF£¨x£©=sinx£¬x¡Ê£¨0£¬A£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¬ÇóAµÄ×î´óÖµ£®
£¨¿ÉÒÔÀûÓù«Ê½sinx+siny=2sin
x+y |
2 |
x-y |
2 |
·ÖÎö£º£¨1£©ÈθøÈý½ÇÐΣ¬ÉèËüµÄÈý±ß³¤·Ö±ðΪa£¬b£¬c£¬Ôòa+b£¾c£¬²»·Á¼ÙÉèa¡Üc£¬b¡Üc£¬ÎÒÃÇÅжÏf£¨a£©£¬f£¨b£©£¬f£¨c£©ÊÇ·ñÂú×ãÈÎÒâÁ½ÊýÖ®ºÍ´óÓÚµÚÈý¸öÊý£¬¼´ÈÎÒâÁ½±ßÖ®ºÍ´óÓÚµÚÈý±ß£¨2£©ÒªÏëÒ»¸öº¯Êý²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±¹Ø¼üÊǸù¾ÝÌâÖÐÌõ¼þg£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÖÜÆÚº¯Êý£¬ÇÒÖµÓòΪ£¨0£¬+¡Þ£©£¬¾Ù³ö·´Àý£®£¨3£©ÔòÊÇÒªÀûÓá°±£Èý½ÇÐκ¯Êý¡±µÄ¸ÅÄÇóAµÄ×îÖµ£¬¹Û²ìµ½SinxµÄ×î´óֵΪ1£¬ÇÒSin
=
£¬¹Ê¿É²ÂÏë
¿ÉÄÜΪ·ÖÀàÌÖÂ۵ķÖÀà±ê×¼£¬ËùÒÔ½â´ð¹ý³Ì¿Éͨ¹ý¶ÔxÓë
µÄ¹Øϵ½øÐзÖÀàÌÖÂÛ£¬×îºó¸ø³ö½áÂÛ£®
5¦Ð |
6 |
1 |
2 |
5¦Ð |
6 |
5¦Ð |
6 |
½â´ð£º½â£º£¨I£©f1£¨x£©£¬f2£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¬f3£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
ÈθøÈý½ÇÐΣ¬ÉèËüµÄÈý±ß³¤·Ö±ðΪa£¬b£¬c£¬Ôòa+b£¾c£¬²»·Á¼ÙÉèa¡Üc£¬b¡Üc£¬
ÓÉÓÚ
+
£¾
£¾
£¾0£¬ËùÒÔf1£¨x£©£¬f2£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
¶ÔÓÚf3£¨x£©£¬3£¬3£¬5¿É×÷Ϊһ¸öÈý½ÇÐεÄÈý±ß³¤£¬µ«32+32£¼52£¬
ËùÒÔ²»´æÔÚÈý½ÇÐÎÒÔ32£¬32£¬52ΪÈý±ß³¤£¬¹Êf3£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
£¨II£©ÉèT£¾0Ϊg£¨x£©µÄÒ»¸öÖÜÆÚ£¬ÓÉÓÚÆäÖµÓòΪ£¨0£¬+¡Þ£©£¬
ËùÒÔ£¬´æÔÚn£¾m£¾0£¬Ê¹µÃg£¨m£©=1£¬g£¨n£©=2£¬
È¡ÕýÕûÊý¦Ë£¾
£¬¿ÉÖª¦ËT+m£¬¦ËT+m£¬nÕâÈý¸öÊý¿É×÷Ϊһ¸öÈý½ÇÐεÄÈý±ß³¤£¬
µ«g£¨¦ËT+m£©=1£¬g£¨¦ËT+m£©=1£¬g£¨n£©=2²»ÄÜ×÷ΪÈκÎÒ»¸öÈý½ÇÐεÄÈý±ß³¤£®
¹Êg£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
£¨III£©AµÄ×î´óֵΪ
¢ÙÈôA£¾
£¬
È¡
£¬
£¬
¡Ê(0£¬A)£¬ÏÔÈ»ÕâÈý¸öÊý¿É×÷Ϊһ¸öÈý½ÇÐεÄÈý±ß³¤£¬
µ«sin
=1£¬sin
=
£¬sin
=
²»ÄÜ×÷ΪÈκÎÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
¹ÊF£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
¢Úµ±A=
ʱ£¬¶ÔÈÎÒâÈý½ÇÐεÄÈý±ßa£¬b£¬c£¬Èôa£¬b£¬c¡Ê(0£¬
)£¬Ôò·ÖÀàÌÖÂÛÈçÏ£º
£¨1£©a+b+c¡Ý2¦Ð£¬
´Ëʱa¡Ý2¦Ð-b-c£¾2¦Ð-
-
=
£¬Í¬Àí£¬b£¬c£¾
£¬
¡àa£¬b£¬c¡Ê(
£¬
)£¬¹Êsina£¬sinb£¬sinc¡Ê(
£¬1]£¬sina+sinb£¾
+
=1¡Ýsinc£®
ͬÀí¿ÉÖ¤ÆäÓàÁ½Ê½£®
¡àsina£¬sinb£¬sinc¿É×÷Ϊij¸öÈý½ÇÐεÄÈý±ß³¤£®
£¨2£©a+b+c£¼2¦Ð
´Ëʱ£¬
+
£¼¦Ð£¬¿ÉµÃÈçÏÂÁ½ÖÖÇé¿ö£º
¡Ü
ʱ£¬ÓÉÓÚa+b£¾c£¬ËùÒÔ£¬0£¼
£¼
¡Ü
£®
ÓÉsinxÔÚ(0£¬
]Éϵĵ¥µ÷ÐԿɵÃ0£¼sin
£¼sin
¡Ü1£»
£¾
ʱ£¬0£¼
£¼¦Ð-
£¼
£¬
ͬÑù£¬ÓÉsinxÔÚ(0£¬
)Éϵĵ¥µ÷ÐԿɵÃ0£¼sin
£¼sin
£¼1£»
×ÜÖ®£¬0£¼sin
£¼sin
¡Ü1£®
ÓÖÓÉ|a-b|£¼c£¼
¼°ÓàÏÒº¯ÊýÔÚ£¨0£¬¦Ð£©Éϵ¥µ÷µÝ¼õ£¬
µÃcos
=cos
£¾cos
£¾cos
£¾0£¬
¡àsina+sinb=2sin
cos
£¾2sin
cos
=sinc£®
ͬÀí¿ÉÖ¤ÆäÓàÁ½Ê½£¬ËùÒÔsina£¬sinb£¬sincÒ²ÊÇij¸öÈý½ÇÐεÄÈý±ß³¤£®
¹ÊA=
ʱ£¬F£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
×ÛÉÏ£¬AµÄ×î´óֵΪ
£®
ÈθøÈý½ÇÐΣ¬ÉèËüµÄÈý±ß³¤·Ö±ðΪa£¬b£¬c£¬Ôòa+b£¾c£¬²»·Á¼ÙÉèa¡Üc£¬b¡Üc£¬
ÓÉÓÚ
a |
b |
a+b |
c |
¶ÔÓÚf3£¨x£©£¬3£¬3£¬5¿É×÷Ϊһ¸öÈý½ÇÐεÄÈý±ß³¤£¬µ«32+32£¼52£¬
ËùÒÔ²»´æÔÚÈý½ÇÐÎÒÔ32£¬32£¬52ΪÈý±ß³¤£¬¹Êf3£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
£¨II£©ÉèT£¾0Ϊg£¨x£©µÄÒ»¸öÖÜÆÚ£¬ÓÉÓÚÆäÖµÓòΪ£¨0£¬+¡Þ£©£¬
ËùÒÔ£¬´æÔÚn£¾m£¾0£¬Ê¹µÃg£¨m£©=1£¬g£¨n£©=2£¬
È¡ÕýÕûÊý¦Ë£¾
n-m |
T |
µ«g£¨¦ËT+m£©=1£¬g£¨¦ËT+m£©=1£¬g£¨n£©=2²»ÄÜ×÷ΪÈκÎÒ»¸öÈý½ÇÐεÄÈý±ß³¤£®
¹Êg£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
£¨III£©AµÄ×î´óֵΪ
5¦Ð |
6 |
¢ÙÈôA£¾
5¦Ð |
6 |
È¡
¦Ð |
2 |
5¦Ð |
6 |
5¦Ð |
6 |
µ«sin
¦Ð |
2 |
5¦Ð |
6 |
1 |
2 |
5¦Ð |
6 |
1 |
2 |
¹ÊF£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
¢Úµ±A=
5¦Ð |
6 |
5¦Ð |
6 |
£¨1£©a+b+c¡Ý2¦Ð£¬
´Ëʱa¡Ý2¦Ð-b-c£¾2¦Ð-
5¦Ð |
6 |
5¦Ð |
6 |
¦Ð |
3 |
¦Ð |
3 |
¡àa£¬b£¬c¡Ê(
¦Ð |
3 |
5¦Ð |
6 |
1 |
2 |
1 |
2 |
1 |
2 |
ͬÀí¿ÉÖ¤ÆäÓàÁ½Ê½£®
¡àsina£¬sinb£¬sinc¿É×÷Ϊij¸öÈý½ÇÐεÄÈý±ß³¤£®
£¨2£©a+b+c£¼2¦Ð
´Ëʱ£¬
a+b |
2 |
c |
2 |
a+b |
2 |
¦Ð |
2 |
c |
2 |
a+b |
2 |
¦Ð |
2 |
ÓÉsinxÔÚ(0£¬
¦Ð |
2 |
c |
2 |
a+b |
2 |
a+b |
2 |
¦Ð |
2 |
c |
2 |
a+b |
2 |
¦Ð |
2 |
ͬÑù£¬ÓÉsinxÔÚ(0£¬
¦Ð |
2 |
c |
2 |
a+b |
2 |
×ÜÖ®£¬0£¼sin
c |
2 |
a+b |
2 |
ÓÖÓÉ|a-b|£¼c£¼
5¦Ð |
6 |
µÃcos
a-b |
2 |
|a-b| |
2 |
c |
2 |
5¦Ð |
12 |
¡àsina+sinb=2sin
a+b |
2 |
a-b |
2 |
c |
2 |
c |
2 |
ͬÀí¿ÉÖ¤ÆäÓàÁ½Ê½£¬ËùÒÔsina£¬sinb£¬sincÒ²ÊÇij¸öÈý½ÇÐεÄÈý±ß³¤£®
¹ÊA=
5¦Ð |
6 |
×ÛÉÏ£¬AµÄ×î´óֵΪ
5¦Ð |
6 |
µãÆÀ£ºÑÝÒïÍÆÀíµÄÖ÷ÒªÐÎʽ¾ÍÊÇÓÉ´óÇ°ÌᡢСǰÌáÍƳö½áÂÛµÄÈý¶ÎÂÛÍÆÀí£®Èý¶ÎÂÛÍÆÀíµÄÒÀ¾ÝÓü¯ºÏÂ۵Ĺ۵ãÀ´½²¾ÍÊÇ£ºÈô¼¯ºÏMµÄËùÓÐÔªËض¼¾ßÓÐÐÔÖÊP£¬SÊÇMµÄ×Ó¼¯£¬ÄÇôSÖÐËùÓÐÔªËض¼¾ßÓÐÐÔÖÊP£®ÒªÏëÅжÏf£¨x£©Îª¡°±£Èý½ÇÐκ¯Êý¡±£¬Òª¾¹ýÑÏÃܵÄÂÛ֤˵Ã÷f£¨x£©Âú×ã¡°±£Èý½ÇÐκ¯Êý¡±µÄ¸ÅÄµ«ÒªÅжÏf£¨x£©²»Îª¡°±£Èý½ÇÐκ¯Êý¡±£¬½öÐëÒª¾Ù³öÒ»¸ö·´Àý¼´¿É£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿