题目内容

已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且acosC+
3
2
c=b

(Ⅰ)求角A;
(Ⅱ)若a=l,且
3
c-2b=1
,求角B.
分析:(Ⅰ)通过已知表达式,利用正弦定理,以及三角形的内角和,转化sinB=sin(A+C),通过两角和的正弦函数,化简可求A的余弦值,即可求角A;
(Ⅱ)利用a=l,以及
3
c-2b=1
,通过正弦定理,三角形的内角和,转化方程只有B的三角方程,结合B的范围,求角B.
解答:解:(Ⅰ)由acosC+
3
2
c=b
,可得sinAcosC+
3
2
sinC=sinB.
而sinB=sin(A+C)=sinAcosC+cosAsinC.
可得
3
2
sinC=cosAsinC,sinC≠0,
所以
3
2
=cosA,A∈(0,π),所以A=
π
6

(Ⅱ)因为a=l,由
3
c-2b=1
,即
3
c-2b=a

由正弦定理得
3
sinC-2sinB=sinA,
∵A=
π
6

C=
6
-B
,∴
3
sin(
6
-B
)-2sinB=
1
2

整理得cos(B+
π
6
)=
1
2

0<B<
6
,∴B+
π
6
∈(
π
6
,π)

∴B+
π
6
=
π
3

所以B=
π
6
点评:本题考查正弦定理与两角和的正弦函数的应用,三角形的内角和以及三角函数值的求法,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网