题目内容
20.已知实数x、y满足$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤m}\end{array}\right.$,如果目标函数z=x-y的最小值为-1,则m=5.分析 作出不等式组对应的平面区域,利用目标函数z=x-y的最小值是-1,确定m的取值.
解答 解:作出不等式组对应的平面区域如图:
由目标函数z=x-y的最小值是-1,
得y=x-z,即当z=-1时,函数为y=x+1,此时对应的平面区域在直线y=x+1的下方,
由$\left\{\begin{array}{l}{y=x+1}\\{y=2x-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3),
同时A也在直线x+y=m上,即m=2+3=5,
故答案为:5
点评 本题主要考查线性规划的应用,根据条件求出m的值是解决本题的关键,利用数形结合是解决此类问题的基本方法.
练习册系列答案
相关题目