题目内容
下列结论中正确命题的个数是
①命题p:“”的否定形式为“;
② 若是q的必要条件,则p是的充分条件;
③ “M>N”是“”的充分不必要条件.
①命题p:“”的否定形式为“;
② 若是q的必要条件,则p是的充分条件;
③ “M>N”是“”的充分不必要条件.
A.0 | B.1 | C.2 | D.3 |
C
解:①∵命题“?x∈R,x2-2≥0”是特称命题
∴否定命题为:“?x∈R,x2-2<0,故①正;.
②解:∵¬p是q的必要条件,
∴q?-p为真命题,
故p?-q为真命题
故p是¬q的充分条件,故②正确;
③∵函数y=()x在R上单调递减,
∴M>N?()M<()N,
因此“M>N”是“()M>()N”的既不充分也不必要条件,故③错,
故选C.
∴否定命题为:“?x∈R,x2-2<0,故①正;.
②解:∵¬p是q的必要条件,
∴q?-p为真命题,
故p?-q为真命题
故p是¬q的充分条件,故②正确;
③∵函数y=()x在R上单调递减,
∴M>N?()M<()N,
因此“M>N”是“()M>()N”的既不充分也不必要条件,故③错,
故选C.
练习册系列答案
相关题目