题目内容
如图,在△ABC中,已知A(-2 |
2 |
CD |
CH |
(Ⅰ)求点H的轨迹方程;
(Ⅱ)若过定点F(0,2)的直线交曲线E于不同的两点G,H(点G在F,H之间),且满足
FG |
FH |
分析:(Ⅰ)设点H的坐标为(x,y),C点坐标为(x,m),则D(x,0),
=(0,-m),
=(0,y-m),
=2
,m=2y,故C点为(x,2y),由此能求出点H的轨迹方程.
(Ⅱ)直线GH斜率存在时,设G(x1,y1),H(x2,y2),
=λ
,(x1,y1-2)=λ(x2,y2-2),x1=λx2,x1+x2=(1+λ)x2,x1x2=λx22,由此知
<λ< 3,由0<λ<1,知
<λ<1.当直线GH斜率不存在时,方程为x=0,
=
,λ=
,故所求的λ的取值范围是[
,1)..
CD |
CH |
CD |
CH |
(Ⅱ)直线GH斜率存在时,设G(x1,y1),H(x2,y2),
FG |
FH |
1 |
3 |
1 |
3 |
FG |
1 |
3 |
FH |
1 |
3 |
1 |
3 |
解答:解:(Ⅰ)设点H的坐标为(x,y),C点坐标为(x,m),则D(x,0),
∴
=(0,-m),
=(0,y-m),
=2
,
∴m=2y,故C点为(x,2y),
∵
•
=0,
∴(x+
,2y)•(x-
,y)=0(2分)
故点H的轨迹方程为
+y2=1(y≠0).(6分)
(Ⅱ)直线GH斜率存在时,设G(x1,y1),H(x2,y2),
∵
=λ
,
∴(x1,y1-2)=λ(x2,y2-2),
∴x1=λx2,x1+x2=(1+λ)x2,x1x2=λx22,
∴(
)2=x22=
,
∴
=
,整理,得
=
,
∵k2>
,∴4<
<
,∴4<λ+
+2<
,
∴
<λ< 3,
又∵0<λ<1,∴
<λ<1.
当直线GH斜率不存在时,方程为x=0,
=
,λ=
,
∴
≤λ<1.
故所求的λ的取值范围是[
,1)..
∴
CD |
CH |
CD |
CH |
∴m=2y,故C点为(x,2y),
∵
AC |
BH |
∴(x+
2 |
2 |
故点H的轨迹方程为
x2 |
2 |
(Ⅱ)直线GH斜率存在时,设G(x1,y1),H(x2,y2),
∵
FG |
FH |
∴(x1,y1-2)=λ(x2,y2-2),
∴x1=λx2,x1+x2=(1+λ)x2,x1x2=λx22,
∴(
x1+x2 |
1+λ |
x1x2 |
λ |
∴
(
| ||||
(1+λ)2 |
| ||||
λ |
16 | ||
3(
|
(1+λ)2 |
λ |
∵k2>
3 |
2 |
16 | ||
|
16 |
3 |
1 |
λ |
16 |
3 |
∴
1 |
3 |
又∵0<λ<1,∴
1 |
3 |
当直线GH斜率不存在时,方程为x=0,
FG |
1 |
3 |
FH |
1 |
3 |
∴
1 |
3 |
故所求的λ的取值范围是[
1 |
3 |
点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,提高解题能力和解题时技巧,注意合理地进行等价转化.
练习册系列答案
相关题目
如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
BD,BC=2BD,则sinC的值为( )
3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|