题目内容
设A(x1,y1),B(x2,y2)是函数f(x)=1 |
2 |
x |
1-x |
OM |
1 |
2 |
OA |
OB |
1 |
2 |
(1)求证:M点的纵坐标为定植;
(2)若Sn=f(
1 |
n |
2 |
n |
n-1 |
n |
(3)已知an=
|
分析:(1)由
=
(
+
)则M是AB中点,再由其横坐标为
建立等式
(x1+x2)=x=
,得到x1+x2=1,再由y=
(y1+y2)
转化为y=
[f(x1)+f(x2)]用x的关系来探究.
(2)由(1)知,x1+x2=1,f(x1)+f(x2)=y1+y2=1,即:Sn=f(
)+f(
)++f(
),Sn=f(
)+f(
)++f(
),两式相加求解.
(3)当n=1时,Tn=a1=
,Sn+1+1=S2+1=
,由Tn<λ(Sn+1+1),得
<
λ,得λ>
.
当n≥2时,an=
=
=4(
-
)用裂项法求得Tn,
由Tn<λ(Sn+1+1)求解.
OM |
1 |
2 |
OA |
OB |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
转化为y=
1 |
2 |
(2)由(1)知,x1+x2=1,f(x1)+f(x2)=y1+y2=1,即:Sn=f(
1 |
n |
2 |
n |
n-1 |
n |
n-1 |
n |
n-2 |
n |
1 |
n |
(3)当n=1时,Tn=a1=
2 |
3 |
3 |
2 |
3 |
2 |
3 |
2 |
4 |
9 |
当n≥2时,an=
1 |
(Sn+1)(Sn+1+1) |
4 |
(n+1)(n+2) |
1 |
n+1 |
1 |
n+2 |
由Tn<λ(Sn+1+1)求解.
解答:解:(1)∵
=
(
+
)∴M是AB中点,设M为(x,y)
由
(x1+x2)=x=
,得x1+x2=1,∴x1=1-x2或x2=1-x1
∴y=
(y1+y2)
=
[f(x1)+f(x2)]
=
(
+log2
+
+log2
)
=
(1+log2
+log2
)
=
(1+log2[
•
]
=
(1+log2
•
)=
∴M点的纵坐标的定值为
(2)由(1)知,x1+x2=1,
则f(x1)+f(x2)=y1+y2=1,
Sn=f(
)+f(
)+…+f(
),Sn=f(
)+f(
)+…+f(
),
上述两式相加,得
2Sn=[f(
)+f(
)]+[f(
)+f(
)]+…+[f(
)+f(
)]
=1+1+…+1
∴Sn=
(n≥2,n∈N*)
(3)当n=1时,Tn=a1=
,Sn+1+1=S2+1=
,
由Tn<λ(Sn+1+1),得
<
λ,得λ>
.
当n≥2时,an=
=
=4(
-
)
∴Tn=a1+a2+…+an=
+4(
-
)=
由Tn<λ(Sn+1+1),得
<λ
,
∴λ>
=
=
,
∵
≤
=
,(当且仅当n=2时,=成立)∴λ>
.
综上所述,若对一切n∈N*.都有Tn<λ(Sn+1+1)成立,由于
<
,所以λ>
OM |
1 |
2 |
OA |
OB |
由
1 |
2 |
1 |
2 |
∴y=
1 |
2 |
=
1 |
2 |
=
1 |
2 |
1 |
2 |
x |
1-x1 |
1 |
2 |
x2 |
1-x2 |
=
1 |
2 |
x1 |
1-x1 |
x2 |
1-x2 |
=
1 |
2 |
x1 |
1-x1 |
x2 |
1-x2 |
=
1 |
2 |
x1 |
x2 |
x2 |
x1 |
1 |
2 |
∴M点的纵坐标的定值为
1 |
2 |
(2)由(1)知,x1+x2=1,
则f(x1)+f(x2)=y1+y2=1,
Sn=f(
1 |
n |
2 |
n |
n-1 |
n |
n-1 |
n |
n-2 |
n |
1 |
n |
上述两式相加,得
2Sn=[f(
1 |
n |
n-1 |
n |
2 |
n |
n-2 |
n |
n-1 |
n |
1 |
n |
=1+1+…+1
∴Sn=
n-1 |
2 |
(3)当n=1时,Tn=a1=
2 |
3 |
3 |
2 |
由Tn<λ(Sn+1+1),得
2 |
3 |
3 |
2 |
4 |
9 |
当n≥2时,an=
1 |
(Sn+1)(Sn+1+1) |
4 |
(n+1)(n+2) |
1 |
n+1 |
1 |
n+2 |
∴Tn=a1+a2+…+an=
2 |
3 |
1 |
3 |
1 |
n+2 |
2n |
n+2 |
由Tn<λ(Sn+1+1),得
2n |
n+2 |
n+2 |
n |
∴λ>
4n |
(n+2)2 |
4n |
n2+4n+4 |
4 | ||
n+
|
∵
4 | ||
n+
|
4 |
4+4 |
1 |
2 |
1 |
2 |
综上所述,若对一切n∈N*.都有Tn<λ(Sn+1+1)成立,由于
4 |
9 |
1 |
2 |
1 |
2 |
点评:本题主要考查中点的向量表示及函数值求解,还考查了用裂项法求数列前n项和,构造数列不等式恒成立问题.

练习册系列答案
相关题目