题目内容

若函数h(x)满足

(1)h(0)=1,h(1)=0;

(2)对任意,有h(h(a))=a;

(3)在(0,1)上单调递减。则称h(x)为补函数。已知函数

(1)判函数h(x)是否为补函数,并证明你的结论;

(2)若存在,使得h(m)=m,若m是函数h(x)的中介元,记时h(x)的中介元为xn,且,若对任意的,都有Sn< ,求的取值范围;

(3)当=0,时,函数y= h(x)的图像总在直线y=1-x的上方,求P的取值范围。

 

【答案】

 见解析

【解析】(1)函数是补函数。证明如下:

③令,有

因为,所以当时,,所以在(0,1)上单调递减,故函数在(0,1)上单调递减。

(2)   当,由,得: 

①当时,中介元

②当时,由(*)可得

得中介元,综上有对任意的,中介元

于是,当时,有=

当n无限增大时, 无限接近于, 无限接近于,故对任意的成立等价于,即

(3)   当时, ,中介元是

①当时, ,中介元为,所以点不在直线y=1-x的上方,不符合条件;

②当时,依题意只须时恒成立,也即时恒成立,设,则

可得,且当时,,当时,,又因为=1,所以当时, 恒成立。

综上:p的取值范围为(1,+)。

【点评】本题考查导数的应用、函数的新定义,函数与不等式的综合应用以及分类讨论,数形结合的数学思想. 高考中,导数解答题一般有以下几种考查方向:一、导数的几何意义,求函数的单调区间;二、用导数研究函数的极值,最值;三、用导数求最值的方法证明不等式.来年需要注意用导数研究函数最值的考查.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网