ÌâÄ¿ÄÚÈÝ
13£®Èçͼ£¬ÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×ó½¹µãΪF£¬¹ýµãFµÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬|AF|µÄ×î´óֵΪM£¬|BF|µÄ×îСֵΪm£¬Âú×ã$M•m=\frac{3}{4}{a^2}$£®£¨¢ñ£©ÈôÏ߶ÎAB´¹Ö±ÓÚxÖáʱ£¬|AB|=$\frac{3}{2}$£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£© ÉèÏ߶ÎABµÄÖеãΪG£¬ABµÄ´¹Ö±Æ½·ÖÏßÓëxÖáºÍyÖá·Ö±ð½»ÓÚD£¬EÁ½µã£¬OÊÇ×ø±êԵ㣬¼Ç¡÷GFDµÄÃæ»ýΪS1£¬¡÷OEDµÄÃæ»ýΪS2£¬Çó$\frac{{2{S_1}{S_2}}}{{{S_1}^2+{S_2}^2}}$µÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨¢ñ£© ÉèF£¨-c£¬0£©£¨c£¾0£©£¬Ôò¸ù¾ÝÍÖÔ²ÐÔÖʵÃM=a+c£¬m=a-c£¬½áºÏÌõ¼þ£¬½â·½³Ì¿ÉµÃa£¬c£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©Éè³öÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4{c}^{2}}$+$\frac{{y}^{2}}{3{c}^{2}}$=1£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=k£¨x+c£©£¬²¢ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½¿ÉµÃGµÄ×ø±ê£¬ÔÙÓÉÈý½ÇÐÎÏàËƵÄÐÔÖÊ£¬¿ÉµÃÃæ»ý±ÈΪ¶ÔÓ¦±ßµÄƽ·½±È£¬½áºÏ²»µÈʽµÄÐÔÖʼ´¿ÉµÃµ½ËùÇó·¶Î§£®
½â´ð ½â£º£¨¢ñ£© ÉèF£¨-c£¬0£©£¨c£¾0£©£¬Ôò¸ù¾ÝÍÖÔ²ÐÔÖʵÃ
M=a+c£¬m=a-c¶øM•m=$\frac{3}{4}$a2£¬
ËùÒÔÓÐa2-c2=$\frac{3}{4}$a2£¬¼´a2=4c2£¬¼´a=2c£¬
ÓÖ$\frac{{2{b^2}}}{a}=\frac{3}{2}$ÇÒa2=b2+c2£¬
µÃ$a=1£¬{b^2}=\frac{3}{4}$£¬
Òò´ËÍÖÔ²µÄ·½³ÌΪ£º${x^2}+\frac{{4{y^2}}}{3}=1$£»
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÖªa=2c£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$c£¬ÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4{c}^{2}}$+$\frac{{y}^{2}}{3{c}^{2}}$=1£¬
¸ù¾ÝÌõ¼þÖ±ÏßABµÄбÂÊÒ»¶¨´æÔÚÇÒ²»ÎªÁ㣬ÉèÖ±ÏßABµÄ·½³ÌΪy=k£¨x+c£©£¬
²¢ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòÓÉ$\left\{\begin{array}{l}y=k£¨x+c£©\\ \frac{x^2}{{4{c^2}}}+\frac{y^2}{{3{c^2}}}=1\end{array}\right.$ÏûÈ¥y²¢ÕûÀíµÃ£¬£¨4k2+3£©x2+8ck2x+4k2c2-12c2=0£¬
´Ó¶øÓÐ${x_1}+{x_2}=-\frac{{8c{k^2}}}{{4{k^2}+3}}£¬{y_1}+{y_2}=k£¨{x_1}+{x_2}+2c£©=\frac{6ck}{{4{k^2}+3}}$£¬
ËùÒÔ$G£¨-\frac{{4c{k^2}}}{{4{k^2}+3}}£¬\frac{3ck}{{4{k^2}+3}}£©$£®
ÒòΪDG¡ÍAB£¬ËùÒÔ$\frac{{\frac{3ck}{{4{k^2}+3}}}}{{-\frac{{4c{k^2}}}{{4{k^2}+3}}-{x_D}}}•k=-1$£¬¼´${x_D}=-\frac{{c{k^2}}}{{4{k^2}+3}}$£®
ÓÉRt¡÷FGDÓëRt¡÷EODÏàËÆ£¬
ËùÒÔ$\frac{S_1}{S_2}=\frac{{G{D^2}}}{{O{D^2}}}=\frac{{{{£¨-\frac{{4c{k^2}}}{{4{k^2}+3}}+\frac{{c{k^2}}}{{4{k^2}+3}}£©}^2}+{{£¨\frac{3ck}{{4{k^2}+3}}£©}^2}}}{{{{£¨-\frac{{c{k^2}}}{{4{k^2}+3}}£©}^2}}}=9+\frac{9}{k^2}£¾9$£®
Áî$\frac{S_1}{S_2}=t$£¬Ôòt£¾9£¬
´Ó¶ø$\frac{{2{S_1}{S_2}}}{{{S_1}^2+{S_2}^2}}=\frac{2}{{t+\frac{1}{t}}}£¼\frac{2}{{9+\frac{1}{9}}}=\frac{9}{41}$£¬
¼´$\frac{{2{S_1}{S_2}}}{{{S_1}^2+{S_2}^2}}$µÄÈ¡Öµ·¶Î§ÊÇ$£¨0£¬\frac{9}{41}£©$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖ±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬¿¼²éÈý½ÇÐÎÏàËƵÄÐÔÖÊ£ºÈý½ÇÐεÄÃæ»ýÖ®±ÈΪÏàËƱȵÄƽ·½£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮