题目内容

已知g(x)=mx+
1
3
f(x)=
x3
3
-x
,若对任意的x1∈[-1,2],总存在x2∈[-1,2],使得g(x1)=f(x2),则m的取值范围是(  )
分析:根据对于任意x1∈[-1,2],总存在x2∈[-1,2],使得g(x1)=f(x2),得到函数g(x)在[-1,2]上值域是f(x)在[-1,2]上值域的子集,然后利用求函数值域的方法求函数f(x)、g(x)在[-1,2]上值域,列出不等式,解此不等式组即可求得实数a的取值范围即可.
解答:解:根据对于任意x1∈[-1,2],总存在x2∈[-1,2],使得g(x1)=f(x2),得到函数g(x)在[-1,2]上值域是f(x)在[-1,2]上值域的子集
f(x)=
x3
3
-x
求导函数可得:f′(x)=x2-1=(x+1)(x-1),∴函数f(x)在[-1,1)上单调减,在(1,2]上单调增
∴f(-1)=
2
3
,f(1)=-
2
3
,f(2)=
2
3
,∴f(x)在[-1,2]上值域是[-
2
3
2
3
];
m>0时,函数g(x)在[-1,2]上单调增,∴g(x)在[-1,2]上值域是[-m+
1
3
,2m+
1
3
]
∴-m+
1
3
≥-
2
3
2
3
≥2m+
1
3

∴0<m≤
1
6

m=0时,g(x)=
1
3
满足题意;
m<0时,函数g(x)在[-1,2]上单调减,∴g(x)在[-1,2]上值域是[2m+
1
3
,-m+
1
3
]
∴2m+
1
3
≥-
2
3
2
3
≥-m+
1
3

∴-
1
3
≤m<0
综上知m的取值范围是[-
1
3
1
6
]
故选C.
点评:本题主要考查了函数恒成立问题,以及函数的值域,同时考查了分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网