题目内容
将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为
- A.45°
- B.30°
- C.60°
- D.90°
D
分析:由题意画出几何体的图形,设出正方形的边长,求出折叠后AD,AE,DE的长度,即可求出∠AED的大小.
解答:
解:由题意画出图形,如图,
设正方形的边长为:2,
折叠前后AD=2,DE=1,连接AC交BD于O,连接OE,则OE=1,AO=
,
因为正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,
AO⊥BD,所以AO⊥平面BCD,所以AO⊥OE,
在△AOE中,AE=
=
,
又AD=2,ED=1,所以DE2+AE2=AD2,
所以∠AED=90°.
故选D.
点评:本题考查折叠问题,注意折叠前后,同一个半平面中的线线关系不变,考查空间想象能力计算能力.
分析:由题意画出几何体的图形,设出正方形的边长,求出折叠后AD,AE,DE的长度,即可求出∠AED的大小.
解答:
设正方形的边长为:2,
折叠前后AD=2,DE=1,连接AC交BD于O,连接OE,则OE=1,AO=
因为正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,
AO⊥BD,所以AO⊥平面BCD,所以AO⊥OE,
在△AOE中,AE=
又AD=2,ED=1,所以DE2+AE2=AD2,
所以∠AED=90°.
故选D.
点评:本题考查折叠问题,注意折叠前后,同一个半平面中的线线关系不变,考查空间想象能力计算能力.
练习册系列答案
相关题目