题目内容

已知数列{an}的前n项和为Sn,且a1=
1
4
,an+1=Sn+
t
16
(n∈N*,t为常数).
(Ⅰ)若数列{an}为等比数列,求t的值;
(Ⅱ)若t>-4,bn=lgan+1,数列{bn}前n项和为Tn,当且仅当n=6时Tn取最小值,求实数t的取值范围.
(I)∵an+1=Sn+
t
16
…(1);an=Sn-1+
t
16
…(2)

(1)-(2)得:an+1=2an(n≥2)…(2分)
∵数列{an}为等比数列,∴
a2
a1
=2
…..(4分)
a2=S1+
t
16
=
4+t
16
,a1=
1
4

4+t
4
=2
,∴t=4…(6分)
(II)a2=
4+t
16
,an+1=2an(n>1),∴an+1=
4+t
16
2n-1(n∈N*)
….(8分)
∵a2,a3,a4…an+1成等比数列,bn=lgan+1
∴数列{bn}是等差数列
∵数列{bn}前n项和为Tn,当且仅当n=6时,Tn取最小值,∴b6<0且b7>0…(10分)
可得0<a7<1且a8>1,…(12分)
∴0<16+4t<1且32+2t>1,
-
15
4
<t<-
7
2
…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网