题目内容

(本小题满分12分)

已知关于的不等式,其中.

(1)当变化时,试求不等式的解集

(2)对于不等式的解集,若满足(其中为整数集). 试探究集合能否为有限集?若 能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由.

 

【答案】

解:(1)当时,

时,

时,;(不单独分析时的情况不扣分)

时,. --------------------6分

 

(2) 由(1)知:当时,集合中的元素的个数无限;

时,集合中的元素的个数有限,此时集合为有限集.

因为,当且仅当时取等号,所以当时,集合的元素个数最少.

此时,故集合.---------------------------------------12分

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网