题目内容

已知函数f(x)=lnx+
1
x
-1

(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设m∈R,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma-(xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2l+1n22+…+ln2n>
(n-1)4
4n3
(n≥2,n∈N*)
分析:(I)利用导数求出函数的极值,然后求f(x)的单调区间;
(II)依题意,ma<f(x)max,由(I)可得f(x)在x=e处取得最大值,故问题转化为ma-
1
e
<0对于任意的a∈(-1,1)恒成立,即可求m的取值范围;
(III)由(Ⅰ)知函数f(x)在[1,+∞)上单调递增,从而可得lnx2≥1-
1
x2
.再利用叠加及放缩,可得ln1+ln2+…+lnn>
(n-1)2
2n
恒成立,再结合柯西不等式即可证明不等式成立.
解答:解:(Ⅰ)f′(x)=
1
x
-
1
x2
=
x-1
x2
,x>0.
令f′(x)>0,得x>1,因此函数f(x)的单调递增区间是(1,+∞).
令f′(x)<0,得0<x<1,因此函数f(x)的单调递减区间是(0,1).…(4分)
(Ⅱ)依题意,ma<f(x)max
由(Ⅰ)知,f(x)在[1,e]上是增函数,
∴f(x)max=f(e)=lne+
1
e
-1=
1
e

∴ma<
1
e
,即ma-
1
e
<0对于任意的a∈(-1,1)恒成立.
m×1-
1
e
≤0
m×(-1)-
1
e
≤0
解得-
1
e
≤m≤
1
e

所以,m的取值范围是[-
1
e
1
e
].…(8分)
(Ⅲ)由(Ⅰ)知函数f(x)在[1,+∞)上单调递增,
故f(x)=lnx+
1
x
-1≥f(1)=0,
∴lnx≥1-
1
x
,以x2替代x,得lnx2≥1-
1
x2

∴ln2l+1n22+…+ln2n>1-
1
12
+1-
1
22
+…+1-
1
n2

即ln2l+1n22+…+ln2n>n-(
1
12
+
1
22
+…+
1
n2
).
1
12
+
1
22
+…+
1
n2
<1+
1
1×2
+
1
2×3
+…+
1
n(n-1)

∴-(
1
12
+
1
22
+…+
1
n2
)>-[1+
1
1×2
+
1
2×3
+…+
1
n(n-1)
]
∴n-(
1
12
+
1
22
+…+
1
n2
)>n-[1+
1
1×2
+
1
2×3
+…+
1
n(n-1)
]=n-[1+1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
]=
(n-1)2
n

∴ln1+ln2+…+lnn>
(n-1)2
2n

由柯西不等式,
(ln2l+1n22+…+ln2n)(12+12+…+12)≥(ln1+ln2+…+lnn)2
∴ln2l+1n22+…+ln2n≥
1
n
(ln1+ln2+…+lnn)2
(n-1)4
4n3
(n≥2,n∈N*)

∴ln2l+1n22,+…+ln2 n>
(n-1)4
4n3
(n≥2,n∈N*)
.…(14分)
点评:本题是中档题,考查函数的导数的应用,不等式的综合应用,柯西不等式的应用,考查计算能力,转化思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网