题目内容
【题目】在平面直角坐标系中,曲线的参数方程为(为参数,),在极坐标系(与平面直角坐标系取相同的单位长度,以坐标原点为极点,轴正半轴为极轴)中,曲线的极坐标方程为.
(1)若可,试判断曲线和的位置关系;
(2)若曲线与交于点,两点,且,满足.求的值.
【答案】(1)相离;(2).
【解析】
(1)将代入,可将和转化为直角坐标方程,结合点到直线距离即可判断和的位置关系;
(2)将直线的参数方程代入圆的直角坐标方程,由参数方程的几何意义即可确定的关系,进而求得的值.
(1)曲线的参数方程为,化为普通方程为,
曲线的极坐标方程为,
∴的直角坐标方程,是以为圆心,1为半径的圆,
因为圆心到直线的距离,
所以曲线和相离.
(2)将代入.
整理得,
由得,
设交点,对应的参数分别为,,
则,
因此所以,
又,
所以,
即,
所以,
解得,
故.
【题目】上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.
由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:
黄赤交角 | |||||
正切值 | 0.439 | 0.444 | 0.450 | 0.455 | 0.461 |
年代 | 公元元年 | 公元前2000年 | 公元前4000年 | 公元前6000年 | 公元前8000年 |
根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( )
A.公元前2000年到公元元年B.公元前4000年到公元前2000年
C.公元前6000年到公元前4000年D.早于公元前6000年
【题目】甲、乙两个班级(各40名学生)进行一门考试,为易于统计分析,将甲、乙两个班学生的成绩分成如下四组:,,,,并分别绘制了如下的频率分布直方图:
规定:成绩不低于90分的为优秀,低于90分的为不优秀.
(1)根据这次抽查的数据,填写下面的列联表:
优秀 | 不优秀 | 合计 | |
甲班 | |||
乙班 | |||
合计 |
(2)根据(1)中的列联表,能否有的把握认为成绩是否优秀与班级有关?
附:临界值参考表与参考公式
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中)