题目内容

设数列{an}的通项公式an=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,那么an+1-an等于(  )
分析:由于an=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,an+1=
1
n+2
+
1
n+3
+…+
1
n+n+1
+
1
2(n+1)
,即可得出an+1-an
解答:解:∵an=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,∴an+1=
1
n+2
+
1
n+3
+…+
1
n+n+1
+
1
2(n+1)

∴an+1-an=
1
2n+1
+
1
2n+2
-
1
n+1
=
1
2n+1
-
1
2n+2

故选D.
点评:本题考查了递推式的含义,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网