题目内容
设数列{an}的通项公式an=
+
+
+…+
,那么an+1-an等于( )
1 |
n+1 |
1 |
n+2 |
1 |
n+3 |
1 |
2n |
分析:由于an=
+
+
+…+
,an+1=
+
+…+
+
,即可得出an+1-an.
1 |
n+1 |
1 |
n+2 |
1 |
n+3 |
1 |
2n |
1 |
n+2 |
1 |
n+3 |
1 |
n+n+1 |
1 |
2(n+1) |
解答:解:∵an=
+
+
+…+
,∴an+1=
+
+…+
+
,
∴an+1-an=
+
-
=
-
.
故选D.
1 |
n+1 |
1 |
n+2 |
1 |
n+3 |
1 |
2n |
1 |
n+2 |
1 |
n+3 |
1 |
n+n+1 |
1 |
2(n+1) |
∴an+1-an=
1 |
2n+1 |
1 |
2n+2 |
1 |
n+1 |
1 |
2n+1 |
1 |
2n+2 |
故选D.
点评:本题考查了递推式的含义,属于基础题.
练习册系列答案
相关题目