题目内容
(本题满分12分)设正项数列的前项和,且满足.
(Ⅰ)计算的值,猜想的通项公式,并证明你的结论;
(Ⅱ)设是数列的前项和,证明:.
【答案】
(Ⅰ);;.猜想,用数学归纳法证明;(Ⅱ)先利用数列知识求和,然后利用放缩法证明或者利用数学归纳法证明
【解析】
试题分析:(Ⅰ)当n=1时,,得;,得;
,得.猜想 2’
证明:(ⅰ)当n=1时,显然成立.
(ⅱ)假设当n=k时, 1’
则当n=k+1时,
结合,解得 2’
于是对于一切的自然数,都有 1’
(Ⅱ)证法一:因为, 3’
.3’
证法二:数学归纳法
证明:(ⅰ)当n=1时,,, 1’
(ⅱ)假设当n=k时, 1’
则当n=k+1时,
要证:
只需证:
由于
所以 3’
于是对于一切的自然数,都有 1’
考点:本题考查了数学归纳法的运用
点评:运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
练习册系列答案
相关题目