题目内容
抛物线y=
x2在点Q(2,1)处的切线方程是______.
1 |
4 |
∵y=
x2,
∴y'(x)=
x,当x=2时,f'(2)=1得切线的斜率为1,所以k=1;
所以曲线y=f(x)在点(2,1)处的切线方程为:
y-1=1×(x-2),即x-y-1=0.
故答案为:x-y-1=0.
1 |
4 |
∴y'(x)=
1 |
2 |
所以曲线y=f(x)在点(2,1)处的切线方程为:
y-1=1×(x-2),即x-y-1=0.
故答案为:x-y-1=0.
练习册系列答案
相关题目
抛物线y=
x2在点Q(2,1)处的切线方程是( )
1 |
4 |
A、x-y-1=0 |
B、x+y-3=0 |
C、x-y+1=0 |
D、x+y-1=0 |