题目内容

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
【答案】分析:(Ⅰ)选择(2),由sin215°+cos215°-sin15°cos15°=1-sin30°=,可得这个常数的值.
(Ⅱ)推广,得到三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=.证明方法一:直接利用两角差的余弦公式代入等式的左边,化简可得结果.
证明方法二:利用半角公式及两角差的余弦公式把要求的式子化为 +-sinα(cos30°cosα+sin30°sinα),即 1-+cos2α+sin2α
-sin2α-,化简可得结果.
解答:解:选择(2),计算如下:
sin215°+cos215°-sin15°cos15°=1-sin30°=,故 这个常数为
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广,得到三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=
证明:(方法一)sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+-sinα(cos30°cosα+sin30°sinα)
=sin2α+cos2α+sin2α+sinαcosα-sinαcosα-sin2α=sin2α+cos2α=
(方法二)sin2α+cos2(30°-α)-sinαcos(30°-α)=+-sinα(cos30°cosα+sin30°sinα)
=1-+(cos60°cos2α+sin60°sin2α)-sin2α-sin2α
=1-+cos2α+sin2α-sin2α-=1--+=
点评:本题主要考查两角差的余弦公式,二倍角公式及半角公式的应用,考查归纳推理以及计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网