ÌâÄ¿ÄÚÈÝ
£¨2012•¸£½¨£©Ä³Í¬Ñ§ÔÚÒ»´ÎÑо¿ÐÔѧϰÖз¢ÏÖ£¬ÒÔÏÂÎå¸öʽ×ÓµÄÖµ¶¼µÈÓÚͬһ¸ö³£Êý£®
£¨1£©sin213¡ã+cos217¡ã-sin13¡ãcos17¡ã
£¨2£©sin215¡ã+cos215¡ã-sin15¡ãcos15¡ã
£¨3£©sin218¡ã+cos212¡ã-sin18¡ãcos12¡ã
£¨4£©sin2£¨-18¡ã£©+cos248¡ã-sin2£¨-18¡ã£©cos48¡ã
£¨5£©sin2£¨-25¡ã£©+cos255¡ã-sin2£¨-25¡ã£©cos55¡ã
£¨¢ñ£©ÊÔ´ÓÉÏÊöÎå¸öʽ×ÓÖÐÑ¡ÔñÒ»¸ö£¬Çó³öÕâ¸ö³£Êý
£¨¢ò£©¸ù¾Ý£¨¢ñ£©µÄ¼ÆËã½á¹û£¬½«¸ÃͬѧµÄ·¢ÏÖÍƹãΪÈý½ÇºãµÈʽ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨1£©sin213¡ã+cos217¡ã-sin13¡ãcos17¡ã
£¨2£©sin215¡ã+cos215¡ã-sin15¡ãcos15¡ã
£¨3£©sin218¡ã+cos212¡ã-sin18¡ãcos12¡ã
£¨4£©sin2£¨-18¡ã£©+cos248¡ã-sin2£¨-18¡ã£©cos48¡ã
£¨5£©sin2£¨-25¡ã£©+cos255¡ã-sin2£¨-25¡ã£©cos55¡ã
£¨¢ñ£©ÊÔ´ÓÉÏÊöÎå¸öʽ×ÓÖÐÑ¡ÔñÒ»¸ö£¬Çó³öÕâ¸ö³£Êý
£¨¢ò£©¸ù¾Ý£¨¢ñ£©µÄ¼ÆËã½á¹û£¬½«¸ÃͬѧµÄ·¢ÏÖÍƹãΪÈý½ÇºãµÈʽ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö£º£¨¢ñ£©Ñ¡Ôñ£¨2£©£¬ÓÉsin215¡ã+cos215¡ã-sin15¡ãcos15¡ã=1-
sin30¡ã=
£¬¿ÉµÃÕâ¸ö³£ÊýµÄÖµ£®
£¨¢ò£©Íƹ㣬µÃµ½Èý½ÇºãµÈʽsin2¦Á+cos2£¨30¡ã-¦Á£©-sin¦Ácos£¨30¡ã-¦Á£©=
£®Ö¤Ã÷·½·¨Ò»£ºÖ±½ÓÀûÓÃÁ½½Ç²îµÄÓàÏÒ¹«Ê½´úÈëµÈʽµÄ×ó±ß£¬»¯¼ò¿ÉµÃ½á¹û£®
Ö¤Ã÷·½·¨¶þ£ºÀûÓðë½Ç¹«Ê½¼°Á½½Ç²îµÄÓàÏÒ¹«Ê½°ÑÒªÇóµÄʽ×Ó»¯Îª
+
-sin¦Á£¨cos30¡ãcos¦Á+sin30¡ãsin¦Á£©£¬¼´ 1-
+
cos2¦Á+
sin2¦Á
-
sin2¦Á-
£¬»¯¼ò¿ÉµÃ½á¹û£®
1 |
2 |
3 |
4 |
£¨¢ò£©Íƹ㣬µÃµ½Èý½ÇºãµÈʽsin2¦Á+cos2£¨30¡ã-¦Á£©-sin¦Ácos£¨30¡ã-¦Á£©=
3 |
4 |
Ö¤Ã÷·½·¨¶þ£ºÀûÓðë½Ç¹«Ê½¼°Á½½Ç²îµÄÓàÏÒ¹«Ê½°ÑÒªÇóµÄʽ×Ó»¯Îª
1-cos2¦Á |
2 |
1+cos(60¡ã-2¦Á) |
2 |
cos2¦Á |
2 |
1 |
4 |
| ||
4 |
-
| ||
4 |
1-cos2¦Á |
4 |
½â´ð£º½â£ºÑ¡Ôñ£¨2£©£¬¼ÆËãÈçÏ£º
sin215¡ã+cos215¡ã-sin15¡ãcos15¡ã=1-
sin30¡ã=
£¬¹Ê Õâ¸ö³£ÊýΪ
£®
£¨¢ò£©¸ù¾Ý£¨¢ñ£©µÄ¼ÆËã½á¹û£¬½«¸ÃͬѧµÄ·¢ÏÖÍƹ㣬µÃµ½Èý½ÇºãµÈʽsin2¦Á+cos2£¨30¡ã-¦Á£©-sin¦Ácos£¨30¡ã-¦Á£©=
£®
Ö¤Ã÷£º£¨·½·¨Ò»£©sin2¦Á+cos2£¨30¡ã-¦Á£©-sin¦Ácos£¨30¡ã-¦Á£©=sin2¦Á+(
cos¦Á+
sin¦Á)2-sin¦Á£¨cos30¡ãcos¦Á+sin30¡ãsin¦Á£©
=sin2¦Á+
cos2¦Á+
sin2¦Á+
sin¦Ácos¦Á-
sin¦Ácos¦Á-
sin2¦Á=
sin2¦Á+
cos2¦Á=
£®
£¨·½·¨¶þ£©sin2¦Á+cos2£¨30¡ã-¦Á£©-sin¦Ácos£¨30¡ã-¦Á£©=
+
-sin¦Á£¨cos30¡ãcos¦Á+sin30¡ãsin¦Á£©
=1-
+
£¨cos60¡ãcos2¦Á+sin60¡ãsin2¦Á£©-
sin2¦Á-
sin2¦Á
=1-
+
cos2¦Á+
sin2¦Á-
sin2¦Á-
=1-
-
+
=
£®
sin215¡ã+cos215¡ã-sin15¡ãcos15¡ã=1-
1 |
2 |
3 |
4 |
3 |
4 |
£¨¢ò£©¸ù¾Ý£¨¢ñ£©µÄ¼ÆËã½á¹û£¬½«¸ÃͬѧµÄ·¢ÏÖÍƹ㣬µÃµ½Èý½ÇºãµÈʽsin2¦Á+cos2£¨30¡ã-¦Á£©-sin¦Ácos£¨30¡ã-¦Á£©=
3 |
4 |
Ö¤Ã÷£º£¨·½·¨Ò»£©sin2¦Á+cos2£¨30¡ã-¦Á£©-sin¦Ácos£¨30¡ã-¦Á£©=sin2¦Á+(
| ||
2 |
1 |
2 |
=sin2¦Á+
3 |
4 |
1 |
4 |
| ||
2 |
| ||
2 |
1 |
2 |
3 |
4 |
3 |
4 |
3 |
4 |
£¨·½·¨¶þ£©sin2¦Á+cos2£¨30¡ã-¦Á£©-sin¦Ácos£¨30¡ã-¦Á£©=
1-cos2¦Á |
2 |
1+cos(60¡ã-2¦Á) |
2 |
=1-
cos2¦Á |
2 |
1 |
2 |
| ||
2 |
1 |
2 |
=1-
cos2¦Á |
2 |
1 |
4 |
| ||
4 |
| ||
4 |
1-cos2¦Á |
4 |
cos2¦Á |
4 |
1 |
4 |
cos2¦Á |
4 |
3 |
4 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ½½Ç²îµÄÓàÏÒ¹«Ê½£¬¶þ±¶½Ç¹«Ê½¼°°ë½Ç¹«Ê½µÄÓ¦Ó㬿¼²é¹éÄÉÍÆÀíÒÔ¼°¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿