题目内容
已知椭圆
+y2=1的左、右焦点为F1、F2,上顶点为A,直线AF1交椭圆于B.如图所示沿x轴折起,使得平面AF1F2⊥平面BF1F2.点O为坐标原点.
( I ) 求三棱锥A-F1F2B的体积;
(Ⅱ)图2中线段BF2上是否存在点M,使得AM⊥OB,若存在,请在图1中指出点M的坐标;若不存在,请说明理由.
解:(Ⅰ)由
得a2=2,b2=1,∴b=1,
.
∴上顶点A(0,1),左焦点F1(-1,0),右焦点F2(1,0).
直线AF1:y=x+1,联立
消去y点得到3x2+4x=0,
解得
,
∴B
.
∴
=
=
.
∵平面AF1F2⊥平面BF1F2,平面AF1F2∩平面BF1F2=F1F2,AO⊥F1F2,![](http://thumb.zyjl.cn/pic5/upload/201305/51d61ecbab477.png)
∴AO⊥平面BF1F2.
∴
=
=
=
.
(Ⅱ)假设存在点M,使得AM⊥OB,由(Ⅰ)可知AO⊥平面BF1F2,∴AO⊥BO.
过点O作OM⊥OB交BF2于点M,连接AM.
∵kOB=
=
,∴kOM=-4,∴直线OM的方程为y=-4x.
直线BF2的方程为
,化为
.
联立
,解得
,
∴
,可知点M在线段BF2上,
由以上作法可知:BO⊥平面AOM,∴BO⊥AM,满足条件.
因此图2中线段BF2上存在点M,使得AM⊥OB,图1中点M的坐标为
.
分析:(Ⅰ)利用椭圆的标准方程及其性质、面面垂直的性质及三棱锥的体积计算公式即可得出;
(Ⅱ)利用线线垂直的斜率之间的关系、线面垂直的判定和性质定理即可得出.
点评:是掌握椭圆的标准方程及其性质、线面与面面垂直的判定和性质定理及三棱锥的体积计算公式、线线垂直的斜率之间的关系是解题的关键.
![](http://thumb.zyjl.cn/pic5/latex/637.png)
![](http://thumb.zyjl.cn/pic5/latex/331571.png)
∴上顶点A(0,1),左焦点F1(-1,0),右焦点F2(1,0).
直线AF1:y=x+1,联立
![](http://thumb.zyjl.cn/pic5/latex/331572.png)
解得
![](http://thumb.zyjl.cn/pic5/latex/331573.png)
∴B
![](http://thumb.zyjl.cn/pic5/latex/195992.png)
∴
![](http://thumb.zyjl.cn/pic5/latex/331574.png)
![](http://thumb.zyjl.cn/pic5/latex/331575.png)
![](http://thumb.zyjl.cn/pic5/latex/331576.png)
∵平面AF1F2⊥平面BF1F2,平面AF1F2∩平面BF1F2=F1F2,AO⊥F1F2,
![](http://thumb.zyjl.cn/pic5/upload/201305/51d61ecbab477.png)
∴AO⊥平面BF1F2.
∴
![](http://thumb.zyjl.cn/pic5/latex/331577.png)
![](http://thumb.zyjl.cn/pic5/latex/331578.png)
![](http://thumb.zyjl.cn/pic5/latex/331579.png)
![](http://thumb.zyjl.cn/pic5/latex/113.png)
(Ⅱ)假设存在点M,使得AM⊥OB,由(Ⅰ)可知AO⊥平面BF1F2,∴AO⊥BO.
过点O作OM⊥OB交BF2于点M,连接AM.
∵kOB=
![](http://thumb.zyjl.cn/pic5/latex/331580.png)
![](http://thumb.zyjl.cn/pic5/latex/96.png)
直线BF2的方程为
![](http://thumb.zyjl.cn/pic5/latex/331581.png)
![](http://thumb.zyjl.cn/pic5/latex/331582.png)
联立
![](http://thumb.zyjl.cn/pic5/latex/331583.png)
![](http://thumb.zyjl.cn/pic5/latex/331584.png)
∴
![](http://thumb.zyjl.cn/pic5/latex/331585.png)
由以上作法可知:BO⊥平面AOM,∴BO⊥AM,满足条件.
因此图2中线段BF2上存在点M,使得AM⊥OB,图1中点M的坐标为
![](http://thumb.zyjl.cn/pic5/latex/331585.png)
分析:(Ⅰ)利用椭圆的标准方程及其性质、面面垂直的性质及三棱锥的体积计算公式即可得出;
(Ⅱ)利用线线垂直的斜率之间的关系、线面垂直的判定和性质定理即可得出.
点评:是掌握椭圆的标准方程及其性质、线面与面面垂直的判定和性质定理及三棱锥的体积计算公式、线线垂直的斜率之间的关系是解题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目