题目内容

已知椭圆+y2=1的左、右焦点为F1、F2,上顶点为A,直线AF1交椭圆于B.如图所示沿x轴折起,使得平面AF1F2⊥平面BF1F2.点O为坐标原点.
( I ) 求三棱锥A-F1F2B的体积;
(Ⅱ)图2中线段BF2上是否存在点M,使得AM⊥OB,若存在,请在图1中指出点M的坐标;若不存在,请说明理由.
【答案】分析:(Ⅰ)利用椭圆的标准方程及其性质、面面垂直的性质及三棱锥的体积计算公式即可得出;
(Ⅱ)利用线线垂直的斜率之间的关系、线面垂直的判定和性质定理即可得出.
解答:解:(Ⅰ)由得a2=2,b2=1,∴b=1,
∴上顶点A(0,1),左焦点F1(-1,0),右焦点F2(1,0).
直线AF1:y=x+1,联立消去y点得到3x2+4x=0,
解得
∴B
==
∵平面AF1F2⊥平面BF1F2,平面AF1F2∩平面BF1F2=F1F2,AO⊥F1F2
∴AO⊥平面BF1F2
===
(Ⅱ)假设存在点M,使得AM⊥OB,由(Ⅰ)可知AO⊥平面BF1F2,∴AO⊥BO.
过点O作OM⊥OB交BF2于点M,连接AM.
∵kOB==,∴kOM=-4,∴直线OM的方程为y=-4x.
直线BF2的方程为,化为
联立,解得
,可知点M在线段BF2上,
由以上作法可知:BO⊥平面AOM,∴BO⊥AM,满足条件.
因此图2中线段BF2上存在点M,使得AM⊥OB,图1中点M的坐标为
点评:是掌握椭圆的标准方程及其性质、线面与面面垂直的判定和性质定理及三棱锥的体积计算公式、线线垂直的斜率之间的关系是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网