题目内容
【题目】一次游戏有10个人参加,现将这10人分为5组,每组两人。
(1)若任意两人可分为一组,求这样的分组方式有多少种?
(2)若这10人中有5名男生和5名女生,要求各组人员不能为同性,求这样的分组方式有多少种?
(3)若这10人恰为5对夫妻,任意两人均可分为一组,问分组后恰有一对夫妻在同组的概率是多少?
【答案】(1)945;(2)种;(3)45.
【解析】
(1)将10人平均分为5组共有,计算即可;
(2)将5名男生视为5个不同的小盒,5名女生视为5个不同的小球,问题转化为将5个小球装入5个不同的盒子,每盒装一个球的不同装法种数;
(3)先任选一对夫妻有种,再将4个丈夫视为A,B,C,D四个小球,4个妻子分别视为a,b,c,d四个盒子, 则4个小球装入4个不同的盒子,每盒一个球,且与自己的字母不同,利用列举法得到结果即可.
(1)将10人平均分为5组共有=945;
(2)将5名男生视为5个不同的小盒,5名女生视为5个不同的小球,问题转化为将5个小球装入5个不同的盒子,每盒一个球,共有种;
(3)先任选一对夫妻有种,再将剩余4对夫妻分组,再将4个丈夫视为A,B,C,D四个小球,4个妻子分别视为a,b,c,d四个盒子,
则4个小球装入4个不同的盒子,每盒一个球,且与自己的字母不同,
有BADC,CADB,DABC,BDAC,CDAB,DCAB,BCDA,DCBA,CDBA,共有9种方法,故不同的分组方法有×9=45.
【题目】某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | 0.4 | |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55] | 15 | 0.3 |
(1)补全频率分布直方图并求 的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[4,45)岁的概率.
【题目】高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率﹪的关系,对某校高三某班学生进行了关注统计,得到如下数据:
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求关于的线性回归方程,并预测答题正确率是100﹪的强化训练次数;
(2)若用表示统计数据的“强化均值”(精确到整数),若“强化均值”的标准差在区间内,则强化训练有效,请问这个班的强化训练是否有效?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
=, =- ,
样本数据的标准差为: