题目内容

数列{an}前n项和为Sn,已知a1=
1
3
,且对任意正整数m,n,都有am+n=am•an,若Sn<a恒成立则实数a的最小值为(  )
A、
1
2
B、
2
3
C、
3
2
D、2
分析:由am+n=am•an,分别令m和n等于1和1或2和1,由a1求出数列的各项,发现此数列是首项和公比都为
1
3
的等比数列,利用等比数列的前n项和的公式表示出Sn,而Sn<a恒成立即n趋于正无穷时,求出Sn的极限小于等于a,求出极限列出关于a的不等式,即可得到a的最小值.
解答:解:令m=1,n=1,得到a2=a12=
1
9
,同理令m=2,n=1,得到a3=
1
27
,…
所以此数列是首项为
1
3
,公比也为
1
3
的等比数列,则Sn=
1
3
(1-
1
3n
)
1-
1
3
=
1
2
(1-
1
3n
),
Sn<a恒成立即n→+∞时,Sn的极限≤a,所以a≥
lim
n→+∞
1
2
(1-
1
3n
)=
1
2

则a的最小值为
1
2

故选A
点评:此题考查了等比数列关系的确定,掌握不等式恒成立时所满足的条件,灵活运用等比数列的前n项和的公式及会进行极限的运算,是一道综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网