题目内容

M为△ABC内一点,过点M的一直线交AB边于P,交AC边于点Q,且满足“”那么M一定是△ABC的( )
A.重心
B.垂心
C.内心
D.外心
【答案】分析:先考察两种特殊情形:当P与B重合时,当Q与C重合时,直线BM和CM都过三角形某一边的中点,再根据三角形中线段长度之间的等量关系判断出直线AM过BC边中点F,从而得出正确答案.
解答:解:∵P为AB边上(除A外)的任意一点,所以当P与B重合时,
可得,

此时Q为AC边中点,
即直线BM过AC边中点.
同理,因为Q为AC边上(除A外)的任意一点
∴当Q与C重合时,可得,
,此时P为AB边中点,
即直线CM过AB边中点;
设D为AC边中点,E为AB边中点,连接ED,直线AM分别交ED、BC于G、F,
∵ED是△ABC的一条中位线,



∴BF=FC
∵BF=FC,
∴F为BC边上中点,因为直线BM过AC边中点D,直线CM过AB边中点E,直线AM过BC边中点F,
∴M为△ABC的重心.
故选A.
点评:本题主要考查了三角形的重心问题.解决三角形的重心问题要注意三角形的重心满足的性质:到顶点距离等于到对边中点的2倍.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网