题目内容

M为△ABC内一点,过点M的一直线交AB边于P,交AC边于点Q,则条件p:“
AB
AP
+
AC
AQ
=3
”是条件q:“M点是△ABC的重心”成立的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分又不必要条件
分析:根据三角形中线段长度之间的等量关系判断出条件p成立时,条件q也成立;反之通过三角形的重心满足的性质:到顶点距离等于到对边中点的2倍判断出条件q成立得到条件p成立,利用充要条件的定义加以判断.
解答:解:①∵P为AB边上(除A外)的任意一点所以当P与B重合时,
可得,
AB
AB
+
AC
AQ
=3

AC
AQ
=2

此时Q为AC边中点,
即直线BM过AC边中点.
同理,因为Q为AC边上(除A外)的任意一点
∴当Q与C重合时,可得,
AB
AP
+
AC
AC
=3

AB
AP
=2
,此时P为AB边中点,
即直线CM过AB边中点
设D为AC边中点,E为AB边中点,连接ED,直线AM分别交ED、BC于G、F,
∵ED是△ABC的一条中位线,
EG
BF
=
AE
AB
=
1
2


EG
FC
=
EM
MC
=
DM
MB
=
ED
BC
=
1
2
精英家教网

EG
BF
=
EG
FC
=
1
2

∴BF=FC
∵BF=FC,
∴F为BC边上中点因为直线BM过AC边中点D,直线CM过AB边中点E,直线 AM过BC边中点F
∴M为△ABC的重心.
②若已知M为重心,亦可求证:
AB
AP
+
AC
AQ
=3

证明:作BF、CE平行于PQ,分别交AC、AB于F、E,
AM的延长分别交CE、BC、BF于G、D、H,
∵M为△ABC的重心,
∴D为BC边中点
∵BF平行于PQ,CE平行于PQ,
∴BF平行于CE
∵BD=DC,BF平行于CE,
∴GD=DH
∵M为△ABC的重心,
∴AM=2MD=MD+(MG+GD)
∵GD=DH,AM=MD+(MG+GD)
∴AM=MD+MG+DH=(MD+DH)+MG=MH+MG
∵AM=MH+MG,
∴3AM=(AM+MH)+(AM+MG)=AH+AG
∵3AM=AH+AG
3=
AH
AM
+
AG
AM

∵BF平行于PQ,
AH
AM
=
AB
AP

∵CE平行于PQ,
AG
AM
=
AC
AQ

3=
AH
AM
+
AG
AM
=
AB
AP
+
AC
AQ

AB
AP
+
AC
AQ
=3

∴p是q的充要条件
故选C
点评:判断应该条件是另一个条件的什么条件,应该先判断前者成立是否能推出后者成立,反之后者成立是否能推出前者成立,再利用充要条件的定义加以判断;解决三角形的重心问题要注意三角形的重心满足的性质:到顶点距离等于到对边中点的2倍.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网