题目内容
8.已知集合M={(x,y)|3x+2y=1},N={(x,y)|2x-y=2},那么集合M∩N为( )A. | x=3,y=-4 | B. | (3,-4) | C. | {-3,-4} | D. | {(3,-4)} |
分析 直接联立方程组求得两直线的交点得答案.
解答 解:∵M={(x,y)|3x+2y=1},N={(x,y)|2x-y=2},
∴M∩N={(x,y)|$\left\{\begin{array}{l}{3x+2y=1}\\{2x-y=2}\end{array}\right.$}={(x,y)|$\left\{\begin{array}{l}{x=3}\\{y=-4}\end{array}\right.$}={(3,-4)}.
故选:D.
点评 本题考查交集及其运算,考查了方程组的解法,是基础题.
练习册系列答案
相关题目