题目内容
9.若集合A={0,1,2},B={x|x2<3},则A∩B=( )A. | ∅ | B. | {-1,0,1} | C. | {0,1,2} | D. | {0,1} |
分析 求解一元二次不等式化简B,然后直接利用交集运算得答案.
解答 解:∵A={0,1,2},B={x|x2<3}={x|$-\sqrt{3}<x<\sqrt{3}$},
∴A∩B={0,1,2}∩{x|$-\sqrt{3}<x<\sqrt{3}$}={0,1},
故选:D.
点评 本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.
练习册系列答案
相关题目
19.设△ABC的三个内角为A、B、C,且tanA,tanB,tanC,2tanB成等差数列,则cos(B-A)=( )
A. | -$\frac{3\sqrt{10}}{10}$ | B. | -$\frac{\sqrt{10}}{10}$ | C. | $\frac{\sqrt{10}}{10}$ | D. | $\frac{3\sqrt{10}}{10}$ |
20.已知F是双曲线$\frac{{x_{\;}^2}}{{a_{\;}^2}}-\frac{{y_{\;}^2}}{{b_{\;}^2}}$=1(a>0,b>0)的左焦点,过F作倾斜角为60°的直线l,直线l与双曲线交于点A与y轴交于点B且$\overrightarrow{FA}=\frac{1}{3}\overrightarrow{FB}$,则该双曲线的离心率等于( )
A. | $\sqrt{5}+1$ | B. | $\frac{{\sqrt{10}+\sqrt{2}}}{2}$ | C. | $\sqrt{5}+1$ | D. | $\frac{\sqrt{7}+1}{2}$ |
4.“a>b”是“3a>3b”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
9.若函数y=f(x)在区间(0,1)上有f′(x)>0,在区间(1,2)上有f′(x)<0,则有( )
A. | f(x)区间(0,1)上单调递减,在区间(1,2)上单调递增 | |
B. | f(x)区间(0,1)上单调递减,在区间(1,2)上单调递减 | |
C. | f(x)区间(0,1)上单调递增,在区间(1,2)上单调递增 | |
D. | f(x)区间(0,1)上单调递增,在区间(1,2)上单调递减 |