ÌâÄ¿ÄÚÈÝ
5£®ÒÑÖªÔ²C1£ºx2+y2=r2ÓëÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÓÚxÖáµÄ½»µãÖغϣ¬ÇÒÍÖÔ²C2µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬Ô²C1Éϵĵ㵽ֱÏßl£ºx=-2$\sqrt{2}$µÄ×î¶Ì¾àÀëΪ2$\sqrt{2}$-2£®£¨1£©ÇóÍÖÔ²C2µÄ·½³Ì£»
£¨2£©Èçͼ¹ýÖ±Ïß1ÉϵĶ¯µãT×÷Ô²C1µÄÁ½ÌõÇÐÏߣ¬ÉèÇеã·Ö±ðΪA¡¢B£¬ÈôÖ±ÏßABÓëÍÖÔ²C2½»ÓÚ²»Í¬µÄÁ½µãC¡¢D£¬Çó¡÷OCDÃæ»ýµÄ×î´óÖµ£®
·ÖÎö £¨1£©ÔËÓÃÀëÐÄÂʹ«Ê½ºÍÖ±ÏߺÍÔ²µÄλÖùØϵ£¬ÒÔ¼°a£¬b£¬cµÄ¹Øϵ£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©Ô²C1µÄ·½³ÌΪx2+y2=4£¬ÉèÖ±Ïßx=-2$\sqrt{2}$ÉϵĶ¯µãTµÄ×ø±êΪ£¨-2$\sqrt{2}$£¬t£©£¬£¨t¡ÊR£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòÖ±ÏßATµÄ·½³ÌΪx1x+y1y=4£¬Ö±ÏßBTµÄ·½³ÌΪx2x+y2y=4£¬Ö±ÏßABµÄ·½³ÌΪ-2$\sqrt{2}$x+ty=2£¬ÓÉ´ËÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃOµ½Ö±ÏßABµÄ¾àÀ룬ÔÙÓÉÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí£¬ÓÉ»ù±¾²»µÈʽ¼´¿ÉµÃµ½×î´óÖµ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬r=a£¬
ÇÒ2$\sqrt{2}$-a=2$\sqrt{2}$-2£¬a2-b2=c2£¬
½âµÃa=2£¬b=c=$\sqrt{2}$£¬
¼´ÓÐÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£»
£¨2£©Ô²C1µÄ·½³ÌΪx2+y2=4£¬
ÉèÖ±Ïßx=-2$\sqrt{2}$ÉϵĶ¯µãTµÄ×ø±êΪ£¨-2$\sqrt{2}$£¬t£©£¬£¨t¡ÊR£©£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòÖ±ÏßATµÄ·½³ÌΪx1x+y1y=4£¬
Ö±ÏßBTµÄ·½³ÌΪx2x+y2y=4£¬
ÓÖT£¨-2$\sqrt{2}$£¬t£©ÔÚÖ±ÏßATºÍBTÉÏ£¬¼´ $\left\{\begin{array}{l}{-2\sqrt{2}{x}_{1}+t{y}_{1}=4}\\{-2\sqrt{2}{x}_{2}+t{y}_{2}=4}\end{array}\right.$£¬
¡àÖ±ÏßABµÄ·½³ÌΪ-2$\sqrt{2}$x+ty=4£¬
ÓÉÔµãOµ½Ö±ÏßABµÄ¾àÀëΪd=$\frac{4}{\sqrt{8+{t}^{2}}}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{-2\sqrt{2}x+ty=4}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$£¬ÏûÈ¥x£¬µÃ£¨t2+16£©y2-8ty-16=0£¬
ÉèC£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬
Ôòy3+y4=$\frac{8t}{{t}^{2}+16}$£¬y3y4=-$\frac{16}{{t}^{2}+16}$£¬
´Ó¶ø|CD|=$\sqrt{1+\frac{{t}^{2}}{8}}$|y3-y4|=$\frac{1}{4}$$\sqrt{16+2{t}^{2}}$•$\sqrt{£¨\frac{8t}{16+{t}^{2}}£©^{2}+\frac{64}{{t}^{2}+16}}$=$\frac{4£¨8+{t}^{2}£©}{16+{t}^{2}}$£¬
Ôò¡÷OCDÃæ»ýΪS=$\frac{1}{2}$d•|CD|=$\frac{1}{2}$•$\frac{4}{\sqrt{8+{t}^{2}}}$•$\frac{4£¨8+{t}^{2}£©}{16+{t}^{2}}$=$\frac{8\sqrt{8+{t}^{2}}}{16+{t}^{2}}$£¬
Áî$\sqrt{8+{t}^{2}}$=m£¨m¡Ý2$\sqrt{2}$£©£¬¼´ÓÐS=$\frac{8m}{8+{m}^{2}}$=$\frac{8}{m+\frac{8}{m}}$¡Ü$\frac{8}{2\sqrt{m•\frac{8}{m}}}$=$\sqrt{2}$£®
µ±ÇÒ½öµ±m=$\frac{8}{m}$£¬¿ÉµÃm=2$\sqrt{2}$£¬¡÷OCDµÄÃæ»ýÈ¡µÃ×î´óÖµ$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄÐÔÖʺÍÖ±ÏߺÍÔ²µÄλÖùØϵ£¬¿¼²éÈý½ÇÐεÄÃæ»ýµÄ×î´óÖµµÄÇ󷨣¬×¢ÒâÔËÓÃÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°»ù±¾²»µÈʽÇóµÃ×îÖµ£¬ÊôÓÚÖеµÌ⣮
A£® | {y|y£¾1} | B£® | {y|y¡Ý1} | C£® | {y|y£¾0} | D£® | {y|y¡Ý0} |