题目内容
(本小题满分12分)已知:y = f (x) 定义域为[–1,1],且满足:f (–1) = f (1) = 0 ,对任意u ,v??[–1,1],都有|f (u) – f (v) | ≤ | u –v | .(1) 判断函数p ( x ) = x2 – 1 是否满足题设条件?(2) 判断函数g(x)=,是否满足题设条件?
(Ⅰ) 不满足 (Ⅱ) 满足
解析:
: (1) 若u ,v ?? [–1,1], |p(u) – p (v)| = | u2 – v2 |=| (u + v )(u – v) |,取u = ??[–1,1],v = ??[–1,1], 则 |p (u) – p (v)| = | (u + v )(u – v) | = | u – v | > | u – v |,所以p( x)不满足题设条件.
(2)分三种情况讨论:
10. 若u ,v ?? [–1,0],则|g(u) – g (v)| = |(1+u) – (1 + v)|=|u – v |,满足题设条件;
20. 若u ,v ?? [0,1], 则|g(u) – g(v)| = |(1 – u) – (1 – v)|= |v –u|,满足题设条件;
30. 若u??[–1,0],v??[0,1],则:
|g (u) –g(v)|=|(1 – u) – (1 + v)| = | –u – v| = |v + u | ≤| v – u| = | u –v|,满足题设条件;
40 若u??[0,1],v??[–1,0], 同理可证满足题设条件.综合上述得g(x)满足条件.
练习册系列答案
相关题目