题目内容
【题目】(本题满分12分)已知函数(R).
(1)当取什么值时,函数取得最大值,并求其最大值;
(2)若为锐角,且,求的值.
【答案】(本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力)
(1) 解:
…… 1分
…… 2分
. …… 3分
∴当,即Z时,函数取得最大值,其值为.
…… 5分
(2)解法1:∵, ∴. …… 6分
∴. …… 7分
∵为锐角,即, ∴.
∴. …… 8分
∴. …… 9分
∴. …… 10分
∴.
∴.
∴或(不合题意,舍去) …… 11分
∴. …… 12分
解法2: ∵, ∴.
∴. …… 7分
∴. …… 8分
∵为锐角,即,
∴. …… 9分
∴. …… 10分
∴. …… 12分
解法3:∵, ∴.
∴. …… 7分
∵为锐角,即, ∴.
∴. …… 8分
∴…… 9分
…… 10分
. …… 12分
【解析】
(1)由倍角公式,辅助角公式,化简f(x),利用三角函数的图像和性质即可得解.
(2)把代入f(x)的解析式得f()的解析式,可求得,进而求得.
(1)f(x)=2sinxcosx+cos2x=sin2x+cos2x,
,
.
∴当,即Z)时,函数f(x)取得最大值,其值为.
(2)∵,∴.
∴.
∵θ为锐角,
∴.
∴.
练习册系列答案
相关题目