题目内容
设。
(Ⅰ)求的单调区间和最小值;
(Ⅱ)讨论与的大小关系;
(Ⅲ)求的取值范围,使得<对任意>0成立。
解(Ⅰ)由题设知,
∴令0得=1,
当∈(0,1)时,<0,故(0,1)是的单调减区间。
当∈(1,+∞)时,>0,故(1,+∞)是的单调递增区间,因此,=1是的唯一值点,且为极小值点,从而是最小值点,所以最小值为
(II)
设,则,
当时,即,
当时,
因此,在内单调递减,
当时,
即
(III)由(I)知的最小值为1,所以,
,对任意,成立
即从而得。
练习册系列答案
相关题目