题目内容
【题目】已知抛物线的焦点为,直线与轴相交于点,与曲线相交于点,且
(1)求抛物线的方程;
(2)过抛物线的焦点的直线交抛物线于两点,过分别作抛物线的切线,两切线交于点,求证点的纵坐标为定值.
【答案】(1) ;(2)证明见解析
【解析】
(1)根据抛物线定义得,再根据点N坐标列方程,解得结果,(2)利用导数求切线斜率,再根据切线方程解得A点纵坐标,最后利用直线与方程联立方程组,借助韦达定理化简的纵坐标.
解:(1)由已知抛物线的焦点 ,
由,得,即
因为点,
所以,
所以抛物线方程:
(2)抛物线的焦点为
设过抛物线的焦点的直线为 .
设直线与抛物线的交点分别为 ,
由消去得:,根据韦达定理得
抛物线,即二次函数,对函数求导数,得,
所以抛物线在点 处的切线斜率为
可得切线方程为,化简得 ,
同理,得到抛物线在点处切线方程为,
两方程消去,得两切线交点纵坐标满足,
,
,即点的纵坐标是定值.
练习册系列答案
相关题目