题目内容

对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数.在实数轴(箭头向右)上[x]是在点x左侧的第一个整数点,当x是整数时[x]就是x.这个函数[x]叫做“取整函数”也叫高斯(Gauss)函数.
从[x]的定义可得下列性质:x-1<[x]≤x<[x+1].
与[x]有关的另一个函数是{x},它的定义是{x}=x-[x],{x}称为x的“小数部分”.
(1)根据上文,求{x}的取值范围和[-5,2]的值;
(2)求[log21]+[log22]+[log23]+[log24]+…+[log21024]的和.
(1)∵[x]是不超过x的最大整数,
且{x}=x-[x],
∴{x}的取值范围是[0,1),
[-5.2]=-6.
(2)∵[log2N]=
0,1≤N<2
1,2≤N< 22
2,22≤N< 23
9,29≤N< 210
10,N= 210

∴[log21]+[log22]+[log23]+[log24]+…+[log21024]
=0+1×(22-2)+2×(23-22)+…+9×(210-29)+10
=8204.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网